Biotechnology and Bioengineering, Vol.112, No.2, 393-404, 2015
Multiple Approaches to Predicting Oxygen and Glucose Consumptions by HepG2 Cells on Porous Scaffolds in an Axial-Flow Bioreactor
In this study, the distribution of oxygen and glucose was evaluated along with consumption by hepatocytes using three different approaches. The methods include (i) Computational Fluid Dynamics (CFD) simulation, (ii) residence time distribution (RTD) analysis using a step-input coupled with segregation model or dispersion model, and (iii) experimentally determined consumption by HepG2 cells in an open-loop. Chitosan-gelatin (CG) scaffolds prepared by freeze-drying and polycaprolactone (PCL) scaffolds prepared by salt leaching technique were utilized for RTD analyses. The scaffold characteristics were used in CFD simulations i.e. Brinkman's equation for flow through porous medium, structural mechanics for fluid induced scaffold deformation, and advection-diffusion equation coupled with Michaelis-Menten rate equations for nutrient consumption. With the assumption that each hepatocyte behaves like a micro-batch reactor within the scaffold, segregation model was combined with RTD to determine exit concentration. A flow rate of 1 mL/min was used in the bioreactor seeded with 0.6 x 10(6) HepG2 cells/cm 3 on CG scaffolds and oxygen consumption was measured using two flow-through electrodes located at the inlet and outlet. Glucose in the spent growth medium was also analyzed. RTD results showed distribution of nutrients to depend on the surface characteristics of scaffolds. Comparisons of outlet oxygen concentrations between the simulation results, and experimental results showed good agreement with the dispersion model. Outlet oxygen concentrations from segregation model predictions were lower. Doubling the cell density showed a need for increasing the flow rate in CFD simulations. This integrated approach provide a useful strategy in designing bioreactors and monitoring tissue regeneration. (C) 2014 Wiley Periodicals, Inc.