Bioresource Technology, Vol.167, 398-406, 2014
Isolation and functional analysis of a glycolipid producing Rhodococcus sp strain IITR03 with potential for degradation of 1,1, 1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)
A 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degrading bacterium strain IITR03 producing trehalolipid was isolated and characterized from a pesticides contaminated soil. The strain IITR03 was identified as a member of the genus Rhodococcus based on polyphasic studies. Under aqueous culture conditions, the strain IITR03 degraded 282 mu M of DDT and could also utilize 10 mM concentration each of 4-chlorobenzoic acid, 3-chlorobenzoic acid and benzoic acid as sole carbon and energy source. The catechol 1,2-dioxygenase enzyme activity resulted in conversion of catechol to form cis, cis-muconic acid. Cloning and sequencing of partial nucleotide sequence of catechol 1,2-dioxygenase gene (cat) from strain IITR03 revealed its similarity to catA gene present in Rhodococcus sp. strain Lin-2 (97% identity) and Rhodococcus strain AN22 (96% identity) degrading benzoate and aniline, respectively. The results suggest that the strain IITR03 could be useful for field bioremediation studies of DDT-residues and chlorinated aromatic compounds present in contaminated sites. (C) 2014 Elsevier Ltd. All rights reserved.