Biomacromolecules, Vol.15, No.8, 2879-2888, 2014
Synthesis and Fluorescence Properties of N-Substituted 1-Cyanobenz[f]isoindole Chitosan Polymers and Nanoparticles for Live Cell Imaging
Highly fluorescent N-substituted 1-cyanobenz-[f]isoindole chitosans (CBI-CSs) with various degrees of N-substitution (DS) were synthesized by reacting chitosan (CS) with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide under mild acidic conditions. Introduction 1-cyanobenz[f]isoindole moieties into the CS backbone resulted in lowering of polymer thermal stability and crystallinity. The fluorescence quantum yield (Phi(f)) of CBI-CS was found to be DS- and molecular-weight-dependent, with decreasing as DS and molecular weight were increased. At similar DS values, CBI-CS exhibited 26 times higher Phi(f) in comparison with fluorescein isothiocyanate-substituted chitosan (FITC-CS). CBI-CS/TPP nanoparticles were fabricated using an ionotropic gelation method in which pentasodium triphosphate (TPP) acted as a cross-linking agent. CS and CBI-CS exhibited low cytotoxicity to normal skin fibroblast cells over a concentration range of 0.1-1000 mu g/mL, while an increased cytotoxicity level was evident in CBI-CS/TPP nanoparticles at concentrations greater than 100 mu g/mL. In contrast with CBI-CS polymers, the CBI-CS/TPP nanoparticles exhibited lower fluorescence; however, confocal microscopy results showed that living normal skin fibroblast cells became fluorescent on nanoparticle uptake. These results suggest that CBI-CS and fabricated nanoparticles thereof may be promising fluorescence probes for live cell imaging.