Applied Surface Science, Vol.324, 576-583, 2015
Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons
Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar+-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O-3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:Superhydrophobicity;Electrodeposition;Metallic surface;Airborne hydrocarbon;Spontaneous surface modification