화학공학소재연구정보센터
Applied Surface Science, Vol.317, 648-656, 2014
Water-phase strategy for synthesis of TiO2-graphene composites with tunable structure for high performance photocatalysts
The controllable synthesis of strongly coupled TiO2/graphene composites has been a long-standing challenge for developing advanced photocatalysts. Here, we report a facile water-phase protocol for synthesis of TiO2-graphene composites using GO aqueous suspension and TiO2 aqueous nanosols as precursors. By controlling the ratio of GO to TiO2, both high-/low-dense TiO2 nanoparticles across graphene and graphene-TiO2-graphene sandwich structured composites are successfully achieved through electrostatic attraction between negatively charged GO nanosheets and positively charged TiO2 nanosols. The TiO2-graphene composites show an enhanced photocatalytic activity for the degradation of methylene blue (MB) under UV light. Interestingly, the sandwich structured TiO2-graphene composite exhibits the best photocatalytic activity and the highest photocurrent density, which is 12.2 and 35.46 times as that of pure TiO2, respectively. The outstanding photocatalytic activity of sandwich structured composite is likely due to the following two reasons, two-channel electron conduction path between TiO2 and graphene, as well as the better adsorption capability of MB molecule. (C) 2014 Elsevier B.V. All rights reserved.