Applied Surface Science, Vol.314, 768-776, 2014
Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt
A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH- ligand generates and adsorbs in a certain scale because of abundant OH- on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs (C) 2014 Elsevier B.V. All rights reserved.