화학공학소재연구정보센터
Applied Surface Science, Vol.313, 207-214, 2014
Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance
In this paper, nanocomposite PVDF/nanoclay membranes were prepared with addition of different concentrations of organically modified montmorillonite (OMMT) into the polymeric casting solution using combination of solution dispersion and phase inversion methods. Membranes were characterized by use of X-ray diffraction (XRD), water contact angle, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their performances were evaluated in terms of pure water flux and fouling parameters. The surface hydrophilicity of all nanocomposites markedly improved compared to nascent PVDF. In addition, XRD patterns revealed the formation of intercalated layers of mineral clays in PVDF matrix. SEM and AFM images showed that addition of OMMT resulted in nanocomposite membranes with thinner skin layer and higher porosity rather than PVDF membranes. Pure water flux of PVDF/OMMT membranes increased significantly (particularly for fabricated membranes by 4 and 6 wt.% OMMT) compared to that of PVDF membrane. Moreover, nanocomposite membranes showed the elevated antifouling properties, and flux recovery of nascent PVDF membranes increased from 51 to 72% with addition of 2 wt.% OMMT nanoparticles. These nanocomposite membranes also offered a remarkable reusability and durability against biofouling. (C) 2014 Elsevier B.V. All rights reserved.