Applied Microbiology and Biotechnology, Vol.99, No.3, 1155-1163, 2015
Enhanced Th1-biased immune efficacy of porcine circovirus type 2 Cap-protein-based subunit vaccine when coadministered with recombinant porcine IL-2 or GM-CSF in mice
Porcine circovirus type 2 (PCV2) capsid (Cap) protein is the primary protective antigen responsible for inducing PCV2-specific protective immunity, so it is a desirable target for the development of recombinant subunit vaccines to prevent PCV2-associated diseases. Interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GMCSF), used as immune adjuvants, have been shown to enhance the immunogenicity of certain antigens or vaccines in various experimental models. In this study, five different subunit vaccines (the PCV2-Cap, Cap-PoIL-2, PCV2-Cap+PoIL-2, Cap-PoGM-CSF, and PCV2-Cap+PoGM-CSF vaccines) were prepared based on baculovirus-expressed recombinant proteins. The immunogenicity of these vaccines was evaluated to identify the immunoenhancement by PoIL-2 and PoGM-CSF of the Cap-protein-based PCV2 subunit vaccine in mice. The PCV2-Cap+PoIL-2, Cap-PoGM-CSF, PCV2-Cap+PoGM-CSF, and PCV2-Cap vaccines induced significantly higher levels of PCV2-specific antibodies than the Cap-PoIL-2 vaccine, whereas there was no apparent difference between these four vaccines. Our results indicate that neither PoIL-2 nor PoGM-CSF had effect on the enhancement of the humoral immunity induced by the PCV2-Cap vaccine. Furthermore, the PCV2-Cap+PoIL-2, Cap-PoGM-CSF, and PCV2-Cap+PoGM-CSF vaccines elicited stronger lymphocyte proliferative responses and greater IL-2 and interferon gamma (IFN-gamma) secretion. This suggests that PoIL-2 and PoGM-CSF substantially augmented the Th1-biased immune response to the PCV2-Cap vaccine. Following challenge, the viral loads in the lungs of the PCV2-Cap+PoIL-2-, Cap-PoGM-CSF-, and PCV2-Cap+PoGM-CSF-treated groups were dramatically lower than those in the Cap-PoIL-2- and PCV2-Cap-treated groups, indicating that the three vaccines induced stronger protective effects against challenge. These findings show that PoIL-2 and PoGM-CSF essentially enhanced the Th1-biased protective efficacy of the PCV2-Cap vaccine when coadministered with the protein or delivered as Cap-PoGM-CSF, and that the "antigen-cytokine"- or "antigen+cytokine"-based vaccines that we report here provide new basis for the development of safer and more effective vaccines.
Keywords:Porcine circovirus type 2 (PCV2);Capsid (Cap) protein;Porcine IL-2;Porcine GM-CSF;Immunoenhancement