화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.99, No.1, 375-386, 2015
The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504
Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O-2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.