Applied Microbiology and Biotechnology, Vol.98, No.22, 9283-9294, 2014
High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium
The white-rot fungus Phanerochaete chrysosporium secretes extracellular oxidative enzymes during secondary metabolism, but lacks versatile peroxidase, an enzyme important in ligninolysis and diverse biotechnology processes. In this study, we report the genetic modification of a P. chrysosporium strain capable of co-expressing two endogenous genes constitutively, manganese peroxidase (mnp1) and lignin peroxidase (lipH8), and the codon-optimized vpl2 gene from Pleurotus eryngii. For this purpose, we employed a highly efficient transformation method based on the use of shock waves developed by our group. The expression of recombinant genes was verified by PCR, Southern blot, quantitative real-time PCR (qRT-PCR), and assays of enzymatic activity. The production yield of ligninolytic enzymes was up to four times higher in comparison to previously published reports. These results may represent significant progress toward the stable production of ligninolytic enzymes and the development of an effective fungal strain with promising biotechnological applications.
Keywords:Phanerochaete chrysosporium;White-rot fungi;Versatile peroxidase;Heterologous expression;Shock waves;Fungal transformation