Applied Catalysis B: Environmental, Vol.164, 371-379, 2015
Effect of support on redox stability of iron oxide for chemical looping conversion of methane
The chemical looping processes utilize lattice oxygen in oxygen carriers to convert carbonaceous fuels in a cyclic redox mode while capturing CO2. Typical oxygen carriers are composed of a primary oxide for active lattice oxygen storage and a ceramic support for enhanced redox stability and activity. Among the various primary oxides reported to date, iron oxide represents a promising option due to its low cost and natural abundance. The current work investigates the effect of support on the cyclic redox performance of iron oxides as well as the underlying mechanisms. Three ceramic supports with varying physical and chemical properties, i.e. perovskite-structured Ca0.8Sr0.2Ti0.8Ni0.2O3, fluorite-structured CeO2, and spinel-structured MgAl2O4, are investigated. The results indicate that the redox properties of the oxygen carrier, e.g. activity and long-term stability, are significantly affected by support and iron oxide interactions. The perovskite supported oxygen carrier exhibits high activity and stability compared to oxygen carriers with ceria support, which deactivate by as much as 75% within 10 redox cycles. The high stability of perovskite supported oxygen carrier is attributable to its high mixed ionic-electronic conductivity. Deactivation of ceria supported samples results from solid-state migration of iron cations and subsequent enrichment on the oxygen carrier surface. This leads to agglomeration and lowered lattice oxygen accessibility. Activity of MgAl2O4 supported oxygen carrier is found to increase during redox cycles in methane. The activity increase is a consequence of surface area increase caused by filamentous carbon formation and oxygen carrier fragmentation. While higher redox activity is desired for chemical looping processes, physical degradation of oxygen carriers can be detrimental. (C) 2014 Elsevier B.V. All rights reserved.