AIChE Journal, Vol.60, No.11, 3762-3772, 2014
Mixing Potential: A New Concept for Optimal Design of Hydrogen and Water Networks with Higher Disturbance Resistance
During the last decade, the design methods of hydrogen and water networks have been improved greatly. Since the resulting network structure featuring minimum utility consumption is not unique, other properties such as disturbance resistance have drawn more and more attention. In this article, a novel concept, Mixing Potential, is proposed to improve the disturbance resistance ability of the networks in the design stage. This concept originates from measuring the concentration fluctuation of a single sink, and could be calculated by its graphical and algorithmic definition, respectively. In addition, a sufficient condition for minimizing the Mixing Potential of a single sink has been proved. Based on this sufficient condition, a graphical and its corresponding algorithmic method are proposed to design the hydrogen and water networks with minimum utility consumption. Literature examples illustrate that the disturbance resistance ability of the network can be improved by adjusting the satisfying order of sinks. (C) 2014 American Institute of Chemical Engineers