화학공학소재연구정보센터
Advanced Powder Technology, Vol.26, No.1, 119-125, 2015
Upgrading of positively buoyant particles using an Inverted Reflux Classifier
This paper is concerned with the separation of cenosphere particles from fly ash. Cenospheres are hollow alumina silicate micro-shells found in fly ash. They are positively buoyant in water, thus allowing gravity-separation to be used to achieve separation from negatively buoyant fly ash particles. In this study an Inverted Reflux Classifier, a combination of parallel inclined channels and a vertical fluidized bed, was used for the first time to recover and concentrate cenospheres from a real fly ash feed obtained from a coal fired power station. The effects of different operating parameters such as the feed rate, product rate, and fluidization rate were investigated. The device was fed at a solids flux of about 2600 kg/(m(2) h). A product grade of 76% was achieved from a feed with a grade of only 0.51%, corresponding to an upgrade of 149. Here, the recovery of the cenospheres was 42%. By increasing the overflow product rate, a significantly higher recovery of 64% was achieved, but at a reduced upgrade of 33. In both cases most of the losses were attributed to the relatively fine cenosphere particles being entrained to the underflow. (C) 2014 The Society of Powder Technology Japan. Published by Elsevier B. V. and The Society of Powder Technology Japan. All rights reserved.