화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.12, No.6, 431-435, June, 2002
Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상
Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film
E-mail:
The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum (E v ) , The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the E v to the conduction band minimum (E C ) . However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to E C is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.
  1. Semiconductors and Semimetals, Vol. 50, Chapters 9 and 10, edited by Pankove JI, Moustakas TD, Academic Press, 1998 (1998)
  2. Myoung JM, Shim KH, Kim C, Gluschenkov O, Kim K, Kim S, Turnbull DA, Bishop SG,, Appl. Phys. Lett., 69, 2722 (1996)
  3. Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishsan A, Santic B, Schlotter P, Appl. Phys. Lett., 72, 1326 (1998)
  4. Oh E, Park H, Park Y, Appl. Phys. Lett., 72, 70 (1998)
  5. Glaser ER, Kennedy TA, Doverspike K, Rowland LB, Gaskill DK, Freitas JA Jr, Asif Khan M, Olson DT, Kuznia JN, Wickenden DK, Phys, Rev. B, 51, 13326 (1995)
  6. Hofmann DM, Kovalev D, Steude G, Meyer BK, Hoffmann A, Eckey L, Heitz R, Detchprom T, Amano H, Akasaki I, Phys. Rev. B, 52, 16702 (1995)
  7. Freitas JA Jr, Kennedy TA, Glaser ER, Carlos WE, Solid-State Electronics, 41, 185 (1997)
  8. Gotz W, Johnson NM, Bour DP, Appl. Phys. Lett., 68, 3470 (1996)
  9. Gotz W, Johnson NM, Street RA, Amano H, Akasaki I, Appl. Phys. Lett., 66, 1340 (1995)
  10. Wang CD, Yu LS, Lau SS, Yu ET, Kim W, Botchkarev AE, Morkoc H, Appl. Phys. Lett., 72, 1211 (1998)
  11. Hacke P, Okushi H, Appl. Phys. Lett., 71, 524 (1997)
  12. Hirsch MT, Wolk JA, Walukiewicz W, Haller EE, Appl. Phys. Lett., 71, 1098 (1997)
  13. Qiu CH, Pankove JI, Appl. Phys. Lett., 70, 1983 (1997)
  14. Li JZ, Lin JY, Jiang HX, Appl. Phys. Lett., 69, 1474 (1996)
  15. Qiu CH, Melton W, Leksono MW, Pankove JI, Keller BP, DenBaars SP, Appl. Phys. Lett., 69, 1282 (1996)
  16. Chadi DJ, Appl. Phys. Lett., 71, 2970 (1997)
  17. Neugebauer J, Van de Walle CG, Appl. Phys. Lett., 69, 503 (1996)
  18. Litwin-Staszewska E, Suski T, Piotrzkowski R, Grzegory I, Robert JL, Konczewicz L, Wasik D, Kaminska E, Cote D, Clerjaud B, J. Appl. Phys., 89, 7960 (2001)
  19. Nakano Y, Kachi T, Appl. Phys. Lett, 79, 2970 (2001)
  20. Myers SM, Wright AF, Petersen GA, Seager SH, Wampler WR, Crawford MH, Han J, J. Appl Phys., 88, 4676 (2000)
  21. Miyachi M, Tanaka T, Kimura Y, Ota H, Appl. Phys. Lett., 72, 1102 (1998)
  22. Goldenberg B, David Zook J, Ulmer RJ, Appl. Phys. Lett., 62, 381 (1993)
  23. Kang TW, Park SH, Song H, Kim TW, Yoon GS, Kim CO, J. Appl. Phys., 84, 2082 (1998)
  24. Chung SJ, Suh EK, Lee HJ, Mao HB, Park SJ 235, 49 (2002) (2002)
  25. Chung SJ, Cha OH, Kim YS, Hong CH, Lee HJ, Jeong MS, White JO, Suh EK, J. Appl. Phys., 89, 5454 (2001)