화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.2, 88-93, February, 2003
중간층 Ti 두께에 따른 CoSi 2 의 에피텍시 성장
Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides
E-mail:
Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of CoSi 2 layers. We investigated the epitaxial growth and interfacial mass transport of CoSi 2 layers formed from 150\AA -Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 \AA to 100 \AA . After we confirmed the appropriate deposition of Ti film even below 100\AA -thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of CoSi 2 films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to CoSi 2 epitaxial growth, while 20\AA -thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of CoSi 2 , which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.
  1. Byun JS, Kim DH, Kim WS, J. Appl. Phys., 78, 1725 (1995)
  2. Dai JY, Guo ZR, Tee SF, Tay CL, Er E, Redkar S, Appl. Phys. Lett., 78, 3091 (2001)
  3. Prokop J, Zybill CE, Veprek S, Thin Solid Films, 359(1), 39 (2000)
  4. Detavernier C, Meirhaeghe RLV, Cardon F, J. Appl. Phys., 88, 133 (2000)
  5. Maex K, Lauwers A, Besser P, Kondoh E, Potter M, Steegen A, IEEE Trans. Electron Devices, 46, 1545 (1999)
  6. Tung RT, Appl. Surf. Sci., 117-118, 268 (1997)
  7. Zhang H, Poole J, Eller R, Keefe M, J. Vac. Sci. Technol. A, 17(4), 1904 (1999)
  8. Lutze J, Scott G, Manley M, IEEE Electron Device Lett., 21, 155 (2000)
  9. Fang H, Ozturk MC, Seebauer EG, Batchelor DE, J. Electrochem. Soc., 146(11), 4240 (1999)
  10. Hsia SL, Tan TY, Smith P, McGuire GE, J. Appl. Phys., 70, 1308 (1991)
  11. Lasky JB, Nakos JS, Cain OJ, Geizz PJ, IEEE Trans. Electron. Devices, 38, 262 (1991)
  12. Tung RT, MRS Symp. Proc., 427, 481 (1996)
  13. Dass MLA, Fraser DB, Wei CS, Appl. Phys. Lett., 58, 1308 (1991)
  14. Kim GB, Baik HK, Appl. Phys. Lett., 69, 3498 (1996)
  15. Adams DP, Yalisove SM, Eaglesham DJ, J. Appl. Phys., 76, 5190 (1994)
  16. Kang TS, Je JH, Kim GB, Baik HK, Lee SM, J. Vac. Sci. Technol. B, 18(4), 1953 (2000)
  17. Kang TS, Je JH, Appl. Phys. Lett., 80, 1361 (2002)