화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.8, 485-490, August, 2003
단일 공정에 의한 고효율 단일모드 반도체 레이저 구조 제작을 위한 고밀도 양자 나노구조 형성
High-Density Quantum Nanostructure for Single Mode Distributed Feedback Semiconductor Lasers by One-Step Growth
E-mail:
We have developed a new way of the constant growth technique to maintain a grating height of originally-etched V-groove of submicron gratings up to 1.5 μm thickness by a low pressure metalorganic chemical vapor deposition. The constant growth technique is well performed on two kinds of submicron gratings that made by holography and electron (e)-beam lithography GaAs buffer layer grown on thermally deformed submicron gratings has an important role in recovering the deformed grating profile from sinusoidal to V-shaped by reducing mass transport effects. The thermal deformation effect on submicron gratings made by e-beam lithography is less than that on submicron gratings made by holography. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystals.
  1. Demeester P, Vermeire G, Vermaerke F, Moerman I, Van Daele P, Gustafsson A, Samuelson L, Berger V, Weisbuch C, Low Dimensional Structures Prepared by Epitaxial Growth or Patterned Substrates, NOTO ASI series, 298, 253 (1989) (1989)
  2. Inoguchi K, Kudo H, Sugahara S, Ito S, Yagi H, Takiguchi H, Jpn. J. Appl. Phys., 33, 852 (1994)
  3. Earles T, Mawst LJ, Botez D, Appl. Phys. Lett., 73, 2072 (1998)
  4. Constantin C, Martinet E, Rudra A, Leifer K, Lelarge F, Biasiol G, Kapon E, J. Crystal Growth, 207, 161 (1999)
  5. Son CS, Kim SI, Kim Y, Park YK, Kim EK, Min SK, Choi IH, J. Appl. Phys., 82, 1205 (1997)
  6. Son CS, Park YK, Kim SI, Kim Y, Kim EK, Min SK, Choi IH, Jpn. J. Appl. Phys., 37, 1701 (1998)
  7. Colas E, Simhony S, Kapon E, Bhat R, Hwang DM, Lin PSD, Appl. Phys. Lett., 57, 914 (1990)
  8. York PK, Connolly JC, Hughes NA, Zamerowski TJ, Abeles JH, Kirk JB, McGinn JT, Murphy KB, J. Crystal Growth, 124, 709 (1992)
  9. Sogawa T, Ando S, Kanbe H, Appl. Phys. Lett., 64, 472 (1994)
  10. Kim TG, Kim EK, Min SK, Park JH, Appl. Phys. Lett., 69, 955 (1996)
  11. Nagai H, Noguchi Y, Matsuoka T, J. Crystal Growth, 71, 225 (1985)
  12. Schilling M, Wunstel K, Appl. Phys. Lett., 49, 710 (1986)
  13. Kojima K, Misunaga K, Kyuma K, Appl. Phys. Lett., 56, 154 (1990)
  14. Koui T, Sakata Y, Sasaki Y, Matsumoto T, Komatsu K, J. Crystal Growth, 195, 503 (1998)