화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 293-299, March, 2015
고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도
Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine-Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization
E-mail:
초록
전기 전도성을 갖는 발포체를 개발하기 위해 고내상 에멀젼(HIPE) 중합법으로 폴리스티렌(PS)/폴리도파민-탄소나노튜브(PDA-CNT) 미세기공 발포체를 제조하여 발포체의 모폴로지 및 전기 전도도를 고찰하였다. 전도성을 부여하기 위한 나노충전제로 CNT를 사용하였는데 수분산성과 HIPE의 안정성을 향상시키기 위하여 CNT 표면을 친수성인 PDA로 개질한 PDA-CNT를 사용하였다. PDA-CNT는 분산성이 우수하여 첨가량을 높여 HIPE를 구성할 수 있었고 전도성이 향상된 발포체를 제조할 수 있었다. 제조한 미세기공 발포체는 기공이 상호 연결된 구조의 모폴로지를 보여 주었다. PDA-CNT의 함량 증가에 따라 HIPE의 항복응력 및 저장 탄성률은 증가하였고 제조된 발포체의 기공 크기는 작아졌다. 전기적 임계점을 보여주는 PDA-CNT 함량은 대략 0.58 wt%였고 PDA-CNT 함량을 5 wt% 첨가했을 때의 전기 전도도는 10^(-3) S/m를 나타내었다.
Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to 10^(-3) S/m.
  1. Cameron NR, Krajnc P, Silverstein MS, “Colloidal Templating”, in Porous Polymers, Silverstein MS, Cameron NR, Hillmyer MA, Editors, John Wileys & Sons, Inc., Hoboken, Chap. 4, p. 120 (2011)
  2. Cameron NR, Polymer, 46(5), 1439 (2005)
  3. BHUMGARA Z, Filtr. Sep., 32(3), 245 (1995)
  4. Krajnc P, Stefanec D, Brown JF, Cameron NR, J. Polym. Sci. A: Polym. Chem., 43(2), 296 (2005)
  5. Ruckenstein E, Wang XB, Biotechnol. Bioeng., 44(1), 79 (1994)
  6. Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R, Adv. Mater., 18(14), 1822 (2006)
  7. Wakeman RJ, Bhumgara ZG, Akay G, Chem. Eng. J., 70(2), 133 (1998)
  8. Bokhari MA, Akay G, Zhang SG, Birch MA, Biomaterials, 26, 5198 (2005)
  9. Iijima S, Nature, 354, 56 (1991)
  10. Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
  11. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
  12. Yao ZL, Braidy N, Botton GA, Alex AT, J. Am. Chem. Soc., 125(51), 16015 (2003)
  13. Shin JY, Premkumar T, Geckeler KE, Chem. Eur. J., 14, 6044 (2008)
  14. Bose S, Khare RA, Moldenaers P, Polymer, 51(5), 975 (2010)
  15. Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP, Polymer, 46(3), 877 (2005)
  16. Sulong AB, Azhari CH, Zulkifli R, Othman MR, Park J, Eur. J. Sci. Res., 33, 295 (2009)
  17. Wang Y, Wu J, Wei F, Carbon, 41, 2939 (2003)
  18. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F, Chem. Mater., 21, 3042 (2009)
  19. Liao Y, Cao B, Wang WC, Zhang LQ, Wu DZ, Jin RG, Appl. Surf. Sci., 255(19), 8207 (2009)
  20. Lee H, Dellatore SM, Miller WM, Messersmith PB, Science, 318, 426 (2007)
  21. Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y, J. Mol. Struct., 982, 152 (2010)
  22. Shi C, Deng C, Zhang X, Yang P, ACS Appl. Mater. Interfaces, 5, 7770 (2013)
  23. Jiang Y, Lu Y, Zhang L, Liu L, Dai Y, Wang W, J. Nanopart. Res., 14, 938 (2012)
  24. Chen S, CaO Y, Feng J, ACS Appl. Mater. Interfaces, 6, 349 (2014)
  25. Lee W, Lee JU, Jung BM, Byun JH, Yi JW, Lee SB, Kim BS, Carbon, 65, 296 (2013)
  26. Noh WJ, Kang MH, Lee SJ, Polym.(Korea), 36(5), 579 (2012)
  27. Grace HP, Chem. Eng. Commun., 14, 225 (1982)
  28. Hermant MC, Klumperman B, Koning CE, Chem. Commun., 2738 (2009)
  29. Princen HM, Kiss AD, J. Colloid Interface Sci., 128, 176 (1989)
  30. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)