Polymer(Korea), Vol.39, No.2, 293-299, March, 2015
고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도
Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine-Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization
E-mail:
초록
전기 전도성을 갖는 발포체를 개발하기 위해 고내상 에멀젼(HIPE) 중합법으로 폴리스티렌(PS)/폴리도파민-탄소나노튜브(PDA-CNT) 미세기공 발포체를 제조하여 발포체의 모폴로지 및 전기 전도도를 고찰하였다. 전도성을 부여하기 위한 나노충전제로 CNT를 사용하였는데 수분산성과 HIPE의 안정성을 향상시키기 위하여 CNT 표면을 친수성인 PDA로 개질한 PDA-CNT를 사용하였다. PDA-CNT는 분산성이 우수하여 첨가량을 높여 HIPE를 구성할 수 있었고 전도성이 향상된 발포체를 제조할 수 있었다. 제조한 미세기공 발포체는 기공이 상호 연결된 구조의 모폴로지를 보여 주었다. PDA-CNT의 함량 증가에 따라 HIPE의 항복응력 및 저장 탄성률은 증가하였고 제조된 발포체의 기공 크기는 작아졌다. 전기적 임계점을 보여주는 PDA-CNT 함량은 대략 0.58 wt%였고 PDA-CNT 함량을 5 wt% 첨가했을 때의 전기 전도도는 10^(-3) S/m를 나타내었다.
Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to 10^(-3) S/m.
Keywords:microcellular foam;high internal phase emulsion;electrical conductivity;carbon nanotube;polydopamine.
- Cameron NR, Krajnc P, Silverstein MS, “Colloidal Templating”, in Porous Polymers, Silverstein MS, Cameron NR, Hillmyer MA, Editors, John Wileys & Sons, Inc., Hoboken, Chap. 4, p. 120 (2011)
- Cameron NR, Polymer, 46(5), 1439 (2005)
- BHUMGARA Z, Filtr. Sep., 32(3), 245 (1995)
- Krajnc P, Stefanec D, Brown JF, Cameron NR, J. Polym. Sci. A: Polym. Chem., 43(2), 296 (2005)
- Ruckenstein E, Wang XB, Biotechnol. Bioeng., 44(1), 79 (1994)
- Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R, Adv. Mater., 18(14), 1822 (2006)
- Wakeman RJ, Bhumgara ZG, Akay G, Chem. Eng. J., 70(2), 133 (1998)
- Bokhari MA, Akay G, Zhang SG, Birch MA, Biomaterials, 26, 5198 (2005)
- Iijima S, Nature, 354, 56 (1991)
- Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
- Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
- Yao ZL, Braidy N, Botton GA, Alex AT, J. Am. Chem. Soc., 125(51), 16015 (2003)
- Shin JY, Premkumar T, Geckeler KE, Chem. Eur. J., 14, 6044 (2008)
- Bose S, Khare RA, Moldenaers P, Polymer, 51(5), 975 (2010)
- Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP, Polymer, 46(3), 877 (2005)
- Sulong AB, Azhari CH, Zulkifli R, Othman MR, Park J, Eur. J. Sci. Res., 33, 295 (2009)
- Wang Y, Wu J, Wei F, Carbon, 41, 2939 (2003)
- Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F, Chem. Mater., 21, 3042 (2009)
- Liao Y, Cao B, Wang WC, Zhang LQ, Wu DZ, Jin RG, Appl. Surf. Sci., 255(19), 8207 (2009)
- Lee H, Dellatore SM, Miller WM, Messersmith PB, Science, 318, 426 (2007)
- Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y, J. Mol. Struct., 982, 152 (2010)
- Shi C, Deng C, Zhang X, Yang P, ACS Appl. Mater. Interfaces, 5, 7770 (2013)
- Jiang Y, Lu Y, Zhang L, Liu L, Dai Y, Wang W, J. Nanopart. Res., 14, 938 (2012)
- Chen S, CaO Y, Feng J, ACS Appl. Mater. Interfaces, 6, 349 (2014)
- Lee W, Lee JU, Jung BM, Byun JH, Yi JW, Lee SB, Kim BS, Carbon, 65, 296 (2013)
- Noh WJ, Kang MH, Lee SJ, Polym.(Korea), 36(5), 579 (2012)
- Grace HP, Chem. Eng. Commun., 14, 225 (1982)
- Hermant MC, Klumperman B, Koning CE, Chem. Commun., 2738 (2009)
- Princen HM, Kiss AD, J. Colloid Interface Sci., 128, 176 (1989)
- Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)