화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.14, No.2, 146-151, February, 2004
InAs 양자점의 광학적 성질에 미치는 초격자층의 영향
Influence of GaAs/AlGaAs Superlattice Layers on Optical Properties of InAs Quantum Dots
E-mail:
We investigated the effects of high potential barriers on the optical characteristics of InAs quantum dots (QDs) by using photoluminescence (PL) and photoreflectance (PR) spectroscopy. A sample with regular InAs quantum dots on GaAs was grown by molecular beam epitaxy (MBE) as a reference. Another InAs QDs sample was embedded in single AlGaAs barriers. On the other hand, a sample with GaAs/AlGaAs superlattice barriers was adopted for comparison with a sample with a single AlGaAs layer. In results, we found that the emission wavelength of QDs was effectively tailored by using high potential barriers. Also, it was found that the optical properties of a sample with QDs embedded in GaAs/AlGaAs superlattices were better than those of a sample with QDs embedded in a single layer of AlGaAs barriers. We believe that GaAs/AlGaAs superlattice could effectively prevent the generation of defects.
  1. Nishi K, Saito H, Sugou S, Lee JS, Appl. Phys. Lett., 74, 1111 (1999)
  2. Bimberg D, Grundmann M, Ledentsov NN, Quantum Dot Heterostructures, Wiley, New york, 1 (1998) (1998)
  3. Finley JJ, Skalitz M, Arzberger M, Zrenner A, Bohm G, Abstreiter G, Appl. Phys. Lett., 73, 2618 (1998)
  4. Arzberger M, Ksberger U, Bhm G, Abtreiter G, Appl. Phys. Lett., 75, 3968 (1999)
  5. Roh CH, Park YJ, Kim KM, Park YM, Kim EK, Shim KB, J. Cryst. Growth, 226(1), 1 (2001)
  6. Aroutiounian V, Petrosyan S, Khachatryan A, J. Appl. Phys., 89, 2268 (2001)
  7. Nozik AJ, Physica E, 14, 115 (2002)
  8. Tatebayashi J, Nishioka M, Arakawa Y, J. Crystal. Growth, 237-239, 1296 (2002)
  9. Xu SJ, Wang XC, Chua SJ, Appl. Phys. Lett., 72, 3335 (1998)
  10. Yamaguchi K, Kaizu T, Yujobo K, Saito Y, J. Crystal. Growth, 237-239, 1301 (2002)
  11. da Silva MJ, Quivy AA, Martini S, Lamas TE, da Silva ECF, Leite JR, J. Cryst. Growth, 251(1-4), 181 (2003)
  12. Meng XQ, Xu B, Jin P, Ye XL, Zhang ZY, Li CM, Wang ZG, J. Cryst. Growth, 243(3-4), 432 (2002)
  13. Ferdos F, Sadeghi M, Zhao QX, Wang SM, Larsson A, J. Crystal. Growth, 227-228, 1140 (2001)
  14. Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H, Yokoyama N, J. Cryst. Growth, 208(1-4), 93 (2000)
  15. Saito H, Nishi K, Sugou S, Appl. Phys. Lett., 73, 2742 (1998)
  16. Kim YS, Lee UH, Lee D, J. Appl. Phys., 87, 241 (2000)
  17. Kim JS, Yu PW, Leem JY, Lee JI, Noh SK, Kim JS, Kim SM, Son JS, Appl. Phys. Lett., 78, 3247 (2001)
  18. Rebohle L, Sehrey FF, Hofer S, Physiea E, 17, 42 (2003)
  19. Grundmann M, Ledentsov NN, Stier O, Bohrer J, Bimberg D, Ustinov VM, Kop'ev PS, Alferov ZI, Phys. Rev. B, 53, R10509 (1995)
  20. Bimberg D, Grundmann M, Ledentsov NN, 'Quantum Dot Heterostructures', Wiley, New york, 125 1998 (1998)
  21. Patan A, Polimeni A, Capizzi M, Martelli F, Phys. Rev. B, 52, 2784 (1995)
  22. Lee DH, Lee D, Lee HG, Noh SK, Leem JY, Lee HJ, Appl. Phys. Lett., 74, 1597 (1999)
  23. Yu PY, Manuel Cardona, 'Fundamentals of Semiconductors,' Springer, Germany, 473 1996 (1996)
  24. Lee DY, Kim JS, Kim DL, Kim KH, Son JS, Kim IS, Han BK, Bae IH, J. Cryst. Growth, 243(1), 66 (2002)
  25. Geddo M, Capizzi M, Patane A, Appl. Phys. Lett., 84, 3374 (1998)
  26. Sek G, Misiewicz J, Ryczko K, Sol. State Communications, 110, 657 (1999)
  27. Aigouy L, Holden T, Pollak FH, Appl. Phys. Lett., 70, 3329 (1997)
  28. Kim JS, Yu PW, Leem JY, Jeon MH, J. Appl. Phys., 91, 5055 (2002)
  29. Ekins-Daukes NJ, Barnes JM, Barnham KWJ, Connolly JP, Mazzer M, Clark JC, Grey R, Hill G, Pate MA, Roberts JS, Sol. Energy Mater. Sol. Cells, 68(1), 71 (2001)
  30. Leem JY, Jeon M, Lee J, Cho G, Lee CR, Kim JS, Kang SK, Ban SI, Lee JI, Cho HK, J. Cryst. Growth, 252(4), 493 (2003)