화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.14, No.8, 595-599, August, 2004
넓은 띠간격 묽은 자성반도체 CuAl 1-x Mn x O 2 세라믹스의 구조 및 전자기 특성
tural, Electrical and Magnetic Properties of Wide Bandgap Diluted Magnetic Semiconductor CuAl 1-x Mn x O 2 Ceramics
E-mail:
We investigated the structural, electrical and magnetic properties of Mn-doped CuAlO 2 delafossite ceramics ( CuAl 1?x Mn x O 2 ,0≤x≤0.05 ), synthesized by solid-state reaction method in an air atmosphere at a sintering temperature of 1150 ? C . The solubility limit of Mn ions in delafossite CuAlO 2 was found to be as low as about 3 mol% . Positive Hall coefficient and the temperature dependence of conductivity established that non-doped CuAlO 2 ceramic is a variable-range hopping p-type semiconductor. It was found that the Mn-doping in CuAlO 2 rapidly reduced the hole concentration and conductivity, indicating compensation of free holes. The analysis of the magnetization data provided an evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Mn ions in CuAl 1?x Mn x O alloy, leading to an almost paramagnetic behavior in this alloy.
  1. Ziese M, Thornton MJ, Spin Electronics, Springer, Berlin, Deutschland, (2001) (2001)
  2. Awschalom DD, Loss D, Samarth N, Semiconductor Spintronics and Quantum Computation, Springer, Berlin, Deutschland, (2002) (2002)
  3. Nagaev EL, Physics of Magnetic Semiconductors, MIR, Moscow, USSR, (1983) (1983)
  4. Haas C, CRC Crit. Rev. Solid State Sci., 1, 47 (1970)
  5. Furdyna JK, J. Appl. Phys., 64, R29 (1988)
  6. Ohno H, Shen A, Matsukara F, Oiwa A, Ando A, Katsumoto S, Iye Y, Appl. Phys. Lett., 69, 363 (1996)
  7. Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD, Nature, 402, 790 (1999)
  8. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K, Nature, 408, 944 (2000)
  9. Ohno H, Science, 281, 951 (1998)
  10. Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J, Boatner LA, J. Appl. Phys., 93, 1 (2003)
  11. DoumercJP, Ammor A, Wichainchai A, Pouchard M, Hagenmuller P, J. Phys. Chem. Solids, 48, 37 (1987)
  12. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H, Nature, 389(6654), 939 (1997)
  13. Lee MS, Kim TY, Kim D, Appl. Phys. Lett., 79, 2028 (2001)
  14. Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo YZ, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H, Appl. Phys. Lett., 78, 3824 (2001)
  15. Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL, Thin Solid Films, 411(1), 119 (2002)
  16. Tsuda N, Nasu K, Yanase A, Satori K, Electronic Conduction in Oxides, Springer, Berlin, Deutschland, (1991) (1991)
  17. Christopher J, Swamy CS, J. Mater. Sci., 27, 1353 (1992)
  18. Spalek J, Lewicki A, Tarnawski Z, Furdyna JK, Galazka RR, Obuszko Z, Phys. Rev. B, 33, 3407 (1986)