Journal of Industrial and Engineering Chemistry, Vol.21, 835-841, January, 2015
Species dependent sustainable preconcentration of zinc: Possible aspects of ABS and CPE
E-mail:
The environmentally benign extraction systems like aqueous biphasic system (ABS) and cloud point extraction (CPE) techniques are well exploited for their applications in elemental speciation analysis. In this article we have studied the extraction possibility of different Zn species using ABS and CPE. The extractions are studied at trace concentration levels in the presence and absence of different interfering cations and anions to find the possibility to preconcentrate Zn in the presence of other elements. It has been observed that using CPE, a complete extraction of Zn-PAN is possible with Cu(II) as a potential interfering ion. Using ABS, ~82% extraction of Zn as Zn-insulin complex is possible with no considerable interference from the associated metal ions. However, the anions like PO4 3-, SCN- and NO2 - ions do interfere. Finally, the clouds of the CPE were taken for confocal microscopy after dissolution in suitable media. The images demonstrate the mechanism of micellization of different Zn species. The nanometer sized vesicles with the Zn species incorporated in it indicates a stronger extraction possibility of the CPE than ABS. The results are indicative of the methodology to be chosen for Zn extraction as per the need of the analyst.
Keywords:Aqueous biphasic system;Cloud point extraction;Speciation;Spectrophotometry;Dynamic light scattering;Condfocal microscopy
- Fraker PJ, Annu. Rev. Nutr., 24, 277 (2004)
- Wellinghausen N, Kirchner H, Rink L, Immunol. Today, 18, 519 (1997)
- Vallee BL, Falchuk KH, Physiol. Rev., 73, 79 (1993)
- Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH, Brain. Res., 271, 217 (1983)
- Sandstead HH, Smith JC, J. Nutr., 126, 2410S (1996)
- Oberleas D, Muhrer ME, O’Dell BL, J. Nutr., 90, 56 (1966)
- Ferguson EL, Gibson RS, Thompson LUS, Am. J. Clin. Nutr., 50, 1450 (1989)
- Solomons NW, J. Nutr., 116, 927 (1986)
- Milne DB, Canfield WK, Mahalko JR, Sandstead HH, Am. J. Clin. Nutr., 39, 535 (1984)
- Wastney ME, Aamodt RL, Rumble WF, Henkin RI, Am. J. Physiol., 251, R398 (1986)
- Silva EL, Roldan PD, Gine MF, J. Hazard. Mater., 171(1-3), 1133 (2009)
- Kolachi NF, Kazi TG, Khan S, Wadhwa SK, Baig JA, Afridi HI, Shah AQ, Shah F, Food Chem. Toxicol., 49, 2548 (2011)
- Chen J, Teo KC, Anal. Chim. Acta, 450, 215 (2001)
- Tabrizi AB, Food Chem., 100, 1698 (2007)
- Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura, Anal. Chim. Acta, 427, 293 (2001)
- de los Rios AP, Hernandez-Fernandez FJ, Alguacil FJ, Lozano LJ, Ginesta A, Garcia-Diaz I, Sanchez-Segado S, Lopez FA, Godinez C, Sep. Purif. Technol., 97, 150 (2012)
- Ooi S, Carter D, Fernando Q, Chem. Commun., 24, 1301 (1967)
- Constant MG, Berg VD, J. Electroanal. Chem., 215, 111 (1986)
- Ohkaku N, Nakamoto K, Inorg. Chem., 10, 798 (1971)
- Fleck HR, Ward AM, Analyst, 58, 388 (1933)
- Gentry CHR, Sherrington LG, Analyst, 71, 432 (1946)
- Gurnani V, Singh A, Venkataramani KB, Anal. Chim. Acta, 485, 221 (2003)
- Rehage H, Hoffmann H, Mol. Phys., 74, 933 (1991)
- Booij HL, in: Kruyt HR (Ed.), Colloid Science, Elsevier, Amsterdam, 1949, p. 681.
- Sangster J, J. Phys. Chem. Ref. Data, 18, 1111 (1989)