화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.15, No.9, 604-607, September, 2005
Cosputtering법으로 증착한 ZnO박막의 Al도핑농도가 미세구조 및 물리적 특성에 끼치는 효과
Effects of Al Doping Concentration on the Microstructure and Physical Properties of ZnO Thin Films Deposited by Cosputtering
E-mail:
Dependence of the crystallinity, surface roughness, carrier concentration, carrier mobility, electrical resistivity and transmittance of Al-doped ZnO films deposited on glass substrates by RF-magnetron sputtering on effects of the ratio of the RF power for AlZnO to that for ZnO (R) have been investigated. X-ray diffraction spectra show strong preferred orientation along the c-axis. The full width at half maximum (FWHM) of the ZnO (002) peak decreases slightly as R increases in the range of R 1.0. Scanning electron micrographs (SEM) show that the ZnO film surface becomes coarse as R increases. The carrier concentration and the carrier mobility in the ZnO thin film are maximal for R=1.5 and 1.0, respectively. The electrical resistivity is minimal for R=1.0 The transmittance of the ZnO:Al film tends to increase, but to decrease slightly in the range of R>0.5. It may be concluded that the optimum R value is 1.0, considering all these analysis results. The cause of the changes in the structure and physical properties of ZnO thin films with R are also discussed.
  1. Hartnagel HL, Dawar AL, Jain AK, Jagadish C, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol and Philadelphia, PA(1995) (1995)
  2. Mayer S, Chopra KL, Sol. Ener. Mat., 17, 319 (1998)
  3. Wanka HA, Lotter E, Shubert MB, Mat. Res. Soc. Symp. Proc., 336, 657 (1994)
  4. Hiramatsu M, Imaeda K, Horio N, Goto T, J. Vac. Sci. Technol. A, 2, 669 (1998)
  5. Chen M, Pei ZL, Sun C, Gong J, Huang RF, Wen LS, Materials Science and Engineering B, 85(2-3), 212 (2001)
  6. Hu J, Gordon RG, J. Appl, Phys. Lett., 71, 880 (1992)
  7. Jiang X, Jia CL, Szyszka B, Appl. Phys. Lett., 80, 3090 (2002)
  8. Park KC, Ma DY, Kim KH, Thin Solid Films, 305(1-2), 201 (1997)
  9. Chen M, Pei ZL, Wang X, Sung C, Wen LS, J. Vac. Sci. Technol. A, 19(3), 963 (2001)
  10. Mass J, Bhattacharya P, Katiyar RS, Mat. Sci. and Eng., 8103, 9 (2003)
  11. Minami T, Nanto H, Takata S, Jpn. J. Appl. Phys., 24, L605 (1985)
  12. Tominaga K, Kataoka M, Ueda T, Chong MF, Shintani Y, Mori I, Thin Solid Films, 253(1-2), 9 (1994)