화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.16, No.1, 68-74, January, 2006
2024 Al 합금의 ECAP 공정에 따른 미세조직 변화와 강도특성
Microstructures and Mechanical Behavior of 2024 Al Alloys Deformed by Equal Channel Angular Pressing
E-mail:
2024 Al alloys were severely deformed by equal channel angular pressing(ECAP) to obtain an ultrafine grain structure. The more deformation amount increased, the more grain size decreased. Most of the grain structure were changed from elongated to equiaxed shape with increasing pass number. The morphology of S' phases was also changed from rod-type to spherical type. The grain size of 6 passed specimen was 100 to 200 nm, and the size of S' phases was about 10 nm in the microstructure. XRD measurements have revealed that the texture formed by plastic deformation disappeared in the 6 passed specimen. SP test results described that the start of crack propagation occurred at the transition zone between plastic bending and membrane stretching because of small elongation. The maximum strength of ECA pressed specimen increased 1.9 GPa to 2.9 GPa with increasing pass number.
  1. Jining Q, Han JH, Guoding Z, Lee JC, Scripta Materialia, 51, 185 (2004)
  2. Akhmadeev NA, Kobelev NP, Mulyukov RR, Soifer M, Valiev RZ, Acta Metall. et Mater., 41, 1041 (1993)
  3. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ, Mater. Sci. Eng. A, 299, 59 (2001)
  4. Owen D, Chokshi AH, Ma Y, Langdon TG, Brit. Ceram. Proc., 51, 61 (1993)
  5. Nagahama H, Ohtera K, Higashi K, Inoue A, Masumoto T, Philos. Mag. Lett., 67, 225 (1993)
  6. Shin DH, Oh KH, Kim WJ, Lee SW, Choo WH, J. Kor. Inst. Met. & Mater., 37, 1048 (1999)
  7. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI, Russian Metall., 1, 99 (1981)
  8. Komura S, Horita Z, Nemoto M, Langdon TG, Journal of Materials Research, 14, 4044 (1999)
  9. Segal VM, Mater. Sci. Eng. A, 197, 157 (1995)
  10. Hong MH, Kim HS, Hong SI, J. Kor. Inst. Met. & Mater., 38, 136 (2000)
  11. Valiev RZ, Mater. Sci. Eng. A, 234, 59 (1997)
  12. Wu Y, Baker I, Scripta Met. Mater., 37, 437 (1997)
  13. Pavlov VA, Phys. Metal. Metall., 67, 924 (1989)
  14. Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B, Acta Metall. et Mater., 42, 2467 (1994)
  15. Ringer SP, Hono K, Polmear IJ, Sakurai T, Applied Surface Science, 94-95, 253 (1996)
  16. Horita Z, Fujinami T, Nemoto M, Langdon TG, Journal of Materials Processing Technology, 117, 288 (2001)
  17. Kannan K, Vetrano JS, Hamilton CH, Metall. Trans. A, 27, 2947 (1996)
  18. Lee JG, Seo CW, Chang SY, Park KT, Shin DH, J. Kor. Inst. Met. & Mater., 39, 158 (2001)
  19. Kang HK, Bachelard L, Kim HW, Kang SB, J. Kor. Inst. Met. & Mater., 39(5), 553 (2001)
  20. Patlan V, Higashi K, Kitagawa K, Vinogradov A, Kawazoe M, Mater. Sci. Eng. A, 319, 589 (2001)
  21. Iwahashi Y, Horita Z, Nemoto M, Langdon TG, Acta Materialia, 45(11), 4733 (1997)
  22. Wang YY, Sun PL, Kao PW, Chang CP, Scripta Materialia, 50(5), 613 (2004)
  23. Yoon KB, Park TG, Shim SH, Jeong IS, Transactions of the KSME A, 25(9), 1493 (2001)
  24. Fluery E, Ha JS, International Journal of Pressure Vessels and Piping, 75, 699 (1998)
  25. Ratchev P, Verlinden B, De Smet P, Van Houtte P, Acta Mater., 46(10), 3523 (1998)
  26. Starink MJ, Gregson PJ, Mater. Sci. Eng. A, 211, 54 (1996)