화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.3, 413-423, March, 2015
Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production
E-mail:
We used sodium chlorite followed by sodium hydroxide as a two-stage pretreatment of cassava stem for removal of lignin and hemicellulose to obtain a substrate with high cellulose content prior to hydrolysis. Response surface methodology was applied to determine the optimum hydrolysis conditions of two-stage pretreated cassava stem. After pretreatment, the cellulose content of cassava stem increased from 42.10% to 86.45%, concomitant with decreases in lignin (87.59%) and hemicellulose (78.18%) content. Acid hydrolysis of two-stage pretreated cassava stem under optimum conditions allowed obtaining a hydrolyzate rich in reducing sugar, with a yields up to 67.37%. Conversely, inhibitors were detected at very low concentrations. The fermentation of the hydrolyzate resulted in an ethanol yield of 22.58 g/100 g substrate corresponding to a theoretical ethanol yield of 84.41%. The results demonstrate that two-stage pretreatment is effective for improving cellulose hydrolyzability, resulting in high fermentable sugar and low fermentation inhibitor concentrations.
  1. Cardona CA, Sanchez OJ, Bioresour. Technol., 98(12), 2415 (2007)
  2. Papong S, Malakul P, Bioresour. Technol., 101, 112 (2010)
  3. Kaewboonsong W, Chira-adisai P, Biomass, Q Print Management, Bangkok (2008)
  4. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
  5. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
  6. Zhang MJ, Wang F, Su RX, Qi W, He ZM, Bioresour. Technol., 101(13), 4959 (2010)
  7. Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S, Bioresour. Technol., 103(1), 425 (2012)
  8. Brigida AIS, Calado VMA, Goncalves LRB, Coelho MAZ, Carbohydr. Polym., 79, 832 (2010)
  9. Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE, Bioresour. Technol., 130, 372 (2013)
  10. Zhang QZ, Cai WM, Biomass Bioenerg., 32(12), 1130 (2008)
  11. Georing HK, Van Soest PJ, Forage fiber analyses (apparatus, reagent, procedures, and some applications), Agriculture Handbook No. 379, Agriculture Research Service-United States Department of Agricultural, USDA, Washington, DC, USA (1970)
  12. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, National Renewable Energy Laboratory Technical Report NREL/TP-510-42622 (2008)
  13. Miller GL, Anal. Chem., 31, 426 (1959)
  14. Thongpoothorn W, Chanthai S, Sriuttha M, Saosang K, Ruangviriyachai C, Ind. Crop. Prod., 36, 437 (2012)
  15. Akaracharanya A, Kesornsit J, Leepipatpiboon N, Srinorakutara T, Kitpreechavanich V, Ann. Microbiol., 61, 431 (2010)
  16. Hubbell CA, Ragauskas AJ, Bioresour. Technol., 101(19), 7410 (2010)
  17. Liu W, Yuan Z, Mao C, Hou Q, Li K, Bioresources., 6, 3469 (2011)
  18. Qi BK, Chen XR, Shen F, Su Y, Wan YH, Ind. Eng. Chem. Res., 48(15), 7346 (2009)
  19. Liao W, Wem Z, Hurley S, Liu Y, Liu Y, Liu C, Chen S, Appl. Biochem. Biotechnol., 124, 1017 (2005)
  20. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC, Enzyme Microb. Technol., 43, 124 (2007)
  21. Zhang B, Chen Y, Wei X, Li M, Wang M, Int. J. Food Eng., 6, 1 (2010)
  22. Cao GL, Ren NQ, Wang AJ, Lee DJ, Guo WQ, Liu BF, Feng YJ, Zhao QL, Int. J. Hydrog. Energy, 34(17), 7182 (2009)
  23. Diler EA, Ipek R, Mat. Sci. Eng. A., 548, 43 (2012)
  24. Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
  25. Demirbas A, Energy Sources, 30, 27 (2008)
  26. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G, Appl. Microbiol. Biotechnol., 82(4), 625 (2009)
  27. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G, Appl. Microbiol. Biotechnol., 53(6), 701 (2000)
  28. Karimi K, Brandberg T, Edebo L, Taherzadeh MJ, Biotechnol. Lett., 27(18), 1395 (2005)
  29. Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 61(2), 143 (2004)
  30. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L, Bioresour. Technol., 101, 1036 (2009)
  31. Carter B, Squillace P, Gilcrease PC, Menkhaus TJ, Biotechnol. Bioeng., 108, 2053 (2012)
  32. Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM, Biochem. Eng. J., 38, 105 (2008)
  33. Dhamole PB, Wang B, Fang H, J. Chem. Technol. Biotechnol., 88, 1744 (2012)
  34. Nigam JN, J. Biotechnol., 87, 17 (2001)
  35. Roberto IC, Mussatto SI, Rodrigues RCLB, Ind. Crop. Prod., 17, 171 (2003)
  36. Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 74(1), 78 (2006)
  37. Lopez Y, Garcia A, Karimi K, Taherzadeh MJ, Martin C, Bioresources, 5, 2268 (2012)
  38. Diaz MJ, Rui E, Romero I, Cara C, Moya M, Castro E, World J. Microbiol. Biotechnol., 25, 891 (2009)
  39. Cai BY, Ge JP, Ling HZ, Cheng KK, Ping WX, Biomass Bioenerg., 36, 250 (2012)
  40. Xiros C, Topakas E, Katapodis P, Christakopoulos P, Ind. Crop. Prod., 28, 213 (2008)
  41. Fonseca BG, Puentes JG, Mateo S, Sanchez S, Moya AJ, Roberto IC, J. Agric. Food Chem., 61, 9658 (2013)
  42. Yang Y, Sharma-shivappa RR, Burns JC, Cheng J, Energy Fuels, 23, 5626 (2009)
  43. Lin CW, Tranb DT, Lai CY, Yet-Pole I, Wu CH, Biomass Bioenerg., 34(12), 1922 (2010)
  44. Velmurugan R, Muthukumar K, Bioresour. Technol., 102(14), 7119 (2011)
  45. Singh A, Bishnoi NR, Ind. Crop. Prod., 44, 283 (2013)