Korean Journal of Chemical Engineering, Vol.32, No.3, 413-423, March, 2015
Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production
E-mail:
We used sodium chlorite followed by sodium hydroxide as a two-stage pretreatment of cassava stem for removal of lignin and hemicellulose to obtain a substrate with high cellulose content prior to hydrolysis. Response surface methodology was applied to determine the optimum hydrolysis conditions of two-stage pretreated cassava stem. After pretreatment, the cellulose content of cassava stem increased from 42.10% to 86.45%, concomitant with decreases in lignin (87.59%) and hemicellulose (78.18%) content. Acid hydrolysis of two-stage pretreated cassava stem under
optimum conditions allowed obtaining a hydrolyzate rich in reducing sugar, with a yields up to 67.37%. Conversely, inhibitors were detected at very low concentrations. The fermentation of the hydrolyzate resulted in an ethanol yield of 22.58 g/100 g substrate corresponding to a theoretical ethanol yield of 84.41%. The results demonstrate that two-stage pretreatment is effective for improving cellulose hydrolyzability, resulting in high fermentable sugar and low fermentation
inhibitor concentrations.
Keywords:Cassava Stem;Two-stage Pretreatment;Response Surface Methodology;Reducing Sugar;Cellulosic Ethanol
- Cardona CA, Sanchez OJ, Bioresour. Technol., 98(12), 2415 (2007)
- Papong S, Malakul P, Bioresour. Technol., 101, 112 (2010)
- Kaewboonsong W, Chira-adisai P, Biomass, Q Print Management, Bangkok (2008)
- Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
- Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
- Zhang MJ, Wang F, Su RX, Qi W, He ZM, Bioresour. Technol., 101(13), 4959 (2010)
- Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S, Bioresour. Technol., 103(1), 425 (2012)
- Brigida AIS, Calado VMA, Goncalves LRB, Coelho MAZ, Carbohydr. Polym., 79, 832 (2010)
- Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE, Bioresour. Technol., 130, 372 (2013)
- Zhang QZ, Cai WM, Biomass Bioenerg., 32(12), 1130 (2008)
- Georing HK, Van Soest PJ, Forage fiber analyses (apparatus, reagent, procedures, and some applications), Agriculture Handbook No. 379, Agriculture Research Service-United States Department of Agricultural, USDA, Washington, DC, USA (1970)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, National Renewable Energy Laboratory Technical Report NREL/TP-510-42622 (2008)
- Miller GL, Anal. Chem., 31, 426 (1959)
- Thongpoothorn W, Chanthai S, Sriuttha M, Saosang K, Ruangviriyachai C, Ind. Crop. Prod., 36, 437 (2012)
- Akaracharanya A, Kesornsit J, Leepipatpiboon N, Srinorakutara T, Kitpreechavanich V, Ann. Microbiol., 61, 431 (2010)
- Hubbell CA, Ragauskas AJ, Bioresour. Technol., 101(19), 7410 (2010)
- Liu W, Yuan Z, Mao C, Hou Q, Li K, Bioresources., 6, 3469 (2011)
- Qi BK, Chen XR, Shen F, Su Y, Wan YH, Ind. Eng. Chem. Res., 48(15), 7346 (2009)
- Liao W, Wem Z, Hurley S, Liu Y, Liu Y, Liu C, Chen S, Appl. Biochem. Biotechnol., 124, 1017 (2005)
- Mussatto SI, Fernandes M, Milagres AMF, Roberto IC, Enzyme Microb. Technol., 43, 124 (2007)
- Zhang B, Chen Y, Wei X, Li M, Wang M, Int. J. Food Eng., 6, 1 (2010)
- Cao GL, Ren NQ, Wang AJ, Lee DJ, Guo WQ, Liu BF, Feng YJ, Zhao QL, Int. J. Hydrog. Energy, 34(17), 7182 (2009)
- Diler EA, Ipek R, Mat. Sci. Eng. A., 548, 43 (2012)
- Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
- Demirbas A, Energy Sources, 30, 27 (2008)
- Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G, Appl. Microbiol. Biotechnol., 82(4), 625 (2009)
- Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G, Appl. Microbiol. Biotechnol., 53(6), 701 (2000)
- Karimi K, Brandberg T, Edebo L, Taherzadeh MJ, Biotechnol. Lett., 27(18), 1395 (2005)
- Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 61(2), 143 (2004)
- Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L, Bioresour. Technol., 101, 1036 (2009)
- Carter B, Squillace P, Gilcrease PC, Menkhaus TJ, Biotechnol. Bioeng., 108, 2053 (2012)
- Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM, Biochem. Eng. J., 38, 105 (2008)
- Dhamole PB, Wang B, Fang H, J. Chem. Technol. Biotechnol., 88, 1744 (2012)
- Nigam JN, J. Biotechnol., 87, 17 (2001)
- Roberto IC, Mussatto SI, Rodrigues RCLB, Ind. Crop. Prod., 17, 171 (2003)
- Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 74(1), 78 (2006)
- Lopez Y, Garcia A, Karimi K, Taherzadeh MJ, Martin C, Bioresources, 5, 2268 (2012)
- Diaz MJ, Rui E, Romero I, Cara C, Moya M, Castro E, World J. Microbiol. Biotechnol., 25, 891 (2009)
- Cai BY, Ge JP, Ling HZ, Cheng KK, Ping WX, Biomass Bioenerg., 36, 250 (2012)
- Xiros C, Topakas E, Katapodis P, Christakopoulos P, Ind. Crop. Prod., 28, 213 (2008)
- Fonseca BG, Puentes JG, Mateo S, Sanchez S, Moya AJ, Roberto IC, J. Agric. Food Chem., 61, 9658 (2013)
- Yang Y, Sharma-shivappa RR, Burns JC, Cheng J, Energy Fuels, 23, 5626 (2009)
- Lin CW, Tranb DT, Lai CY, Yet-Pole I, Wu CH, Biomass Bioenerg., 34(12), 1922 (2010)
- Velmurugan R, Muthukumar K, Bioresour. Technol., 102(14), 7119 (2011)
- Singh A, Bishnoi NR, Ind. Crop. Prod., 44, 283 (2013)