화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.17, No.8, 425-432, August, 2007
페라이트기 9Cr 내열강의 크리프-피로손상에 따른 미세조직 및 초음파 비파괴평가
Microstructural Evolution and Ultrasonic Nondestructive Evaluation During Creep-Fatigue of 9Cr Ferritic Heat-Resisting Steel
E-mail:
The microstructural evolution of ferritic 9Cr-1Mo-V-Nb steel, subjected to creep-fatigue at , was evaluated nondestructively by measuring the ultrasonic velocity. The variation of the ultrasonic velocity with the fatigue life fraction exhibited three regions. In the first region (<0.2), a significant increase in the velocity was observed, followed by a slight increase between the fatigue life fractions of and , and then a decrease in the final region. The change of the ultrasonic velocity during creep-fatigue was interpreted in relation to the microstructural properties. This study proposes an ultrasonic nondestructive evaluation method of quantifying the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.
  1. Abe F, Curr. Opin. Solid State Mater. Sci., 8, 305 (2004)
  2. Szabo PJ, Mater. Sci. Eng. A, 387, 710 (2004)
  3. Kimura M, Yamaguchi K, Hayakawa M, Kobayashi K, Kanazawa K, Int. J. Fatigue, 28, 300 (2006)
  4. Ennis PJ, Zielinska-Lipiec A, Wachter O, Czyrska-Filemonowicz A, Acta Mater., 45, 4901 (1997)
  5. Abe F, Horiuch T, Taneike M, Sawada K, Mater. Sci. Eng. A, 378, 299 (2004)
  6. Eggeler G, Earthman JC, Nilsbang N, Ilschner B, Acta Metal., 37, 49 (1989)
  7. Luxenburger S, Arnold W, Ultrasonics, 40, 797 (2002)
  8. Dobmann G, Kroning M, Theiner W, Willems H, Fiedler U, Nucl. Eng. Design, 157, 137 (1995)
  9. Gupta S, Ray A, Keller E, Inter. J. Fatigue, 29, 1100 (2007)
  10. Byeon JW, Kim CS, Kwun SI, Phys. Stat. Sol. B, 241, 1756 (2004)
  11. Mclntire P, Nondestructive Testing Handbook, 2nd ed., Vol.7, ASNT, (1999) (1999)
  12. Baray D, Stanley R, Nondestructive Evaluation-A tool for design, manufacturing and service, McGraw-Hill, New York, (1989) (1989)
  13. Cheruvu NS, Metall. Trans., 20, 87 (1989)
  14. Kim CS, Ph. D. thesis, Korea University, Korea, (2007) (2007)
  15. Williamson GK, Hall WH, Acta Metall., 1, 22 (1953)
  16. Abe F, Mater. Sci. Eng. A, 387, 565 (2004)
  17. Sawada K, Takeda M, Maruyama K, Ishii R, Yamada M, Nagae Y, Komine R, Mater. Sci. Eng. A, 267, 19 (1999)
  18. Eggeler G, Acta Metall., 37, 3225 (1989)
  19. Taneike M, Abe F, Sawada K, Nature, 424, 294 (2003)
  20. Hattestrand M, Schwind M, Andren HO, Mater. Sci. Eng. A, 250, 27 (1998)
  21. Goebbels K, Materials characterization for process control and product conformity, p.12, CRC press, Florida (1994) (1994)
  22. Lee JE, Kim YC, Ahn JP, Kim HS, Acta Mater., 53, 129 (2005)
  23. Vasudevan M, Palanichamy P, Venkadesan S, Scripta Metall. Mater., 30, 1479 (1994)
  24. Palanichamy P, Vasudevan M, Jayakumar R, Venugopal S, Raj B, NDT & E international, 33, 253 (2000)
  25. Morishita T, Hirao M, Int. Solids Structures, 34, 1169 (1997)
  26. Granato A, Lucke K, J. Appl. Phys., 27, 583 (1956)
  27. Jeong H, Kim DH, Mater. Sci. Eng. A, 337, 82 (2002)