화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.18, No.10, 515-520, October, 2008
저온 ALD로 제조된 TiO2 나노 박막 물성 연구
Property of the Nano-Thick TiO2 Films Using an ALD at Low Temperature
E-mail:
We fabricated 10 nm-TiO2 thin films for DSSC (dye sensitized solar cell) electrode application using ALD (atomic layer deposition) method at the low temperatures of 150oC and 250oC. We characterized the crosssectional microstructure, phase, chemical binding energy, and absorption of the TiO2 using TEM, HRXRD, XPS, and UV-VIS-NIR, respectively. TEM analysis showed a 10 nm-thick flat and uniform TiO2 thin film regardless of the deposition temperatures. Through XPS analysis, it was found that the stoichiometric TiO2 phase was formed and confirmed by measuring main characteristic peaks of Ti 2p1, Ti 2p3, and O 1s indicating the binding energy status. Through UV-VIS-NIR analysis, ALD-TiO2 thin films were found to have a band gap of 3.4 eV resulting in the absorption edges at 360 nm, while the conventional TiO2 films had a band gap of 3.0 eV (rutile)~3.2 eV (anatase) with the absorption edges at 380 nm and 410 nm. Our results implied that the newly proposed nano-thick TiO2 film using an ALD process at 150oC had almost the same properties as thsose of film at 250oC. Therefore, we confirmed that the ALD-processed TiO2 thin film with nano-thickness formed at low temperatures might be suitable for the electrode process of flexible devices.
  1. Gratzel M, Prog. Photovolt. Res. Appl., 8, 171 (2000)
  2. O'regan B, Gratzel M, Nature, 353, 737 (1991)
  3. Hagfelt A, Didriksson B, Palmqvist T, Lindstrom H, Sodergren S, Rensmo H, Lindquist SE, Sol. Energy Mater. Sol. Cells, 31, 481 (1994)
  4. Hagfeldt A, Gratzel M, Acc. Chem. Res., 33, 269 (2000)
  5. Hwang KJ, Yoo SJ, Roh SH, Kim SI, Lee JW, Appl. Chem., 11, 2 (2007)
  6. Shin YJ, Polym. Sci. Tech., 17, 4 (2006)
  7. Lee JW, Hwang KJ, Roh SH, Kim SI, J. Kor. Ind. Eng. Chem., 18, 4 (2007)
  8. Nakatani M, Okunaka M, Saitoh T, Itoh H, Matsukuma K, Kamita N, Morita K: Proc. 17th Conf. IEEE Photovoltaic Specialist, Florida, pp.1352 (1984). (1984)
  9. Dubey GC, Solar Cells, 15, 1 (1985)
  10. Jellison GE, Jr, Wood RF, Solar Cells, 18, 93 (1986)
  11. Shibata A, Kazama Y, Seki K, Kim WY, Yamanaka S, Konagai M, Takahashi K: Proc. 20th Conf. IEEE Photovoltaic Specialist, Las vegas, pp.317-319 (1988). (1988)
  12. Choi JY, Kim DW, Lee EJ, Lee SH, J. Kor. Solar Energy Soc., 1, 69 (2006)
  13. Hao SC, Wu JH, Fan LQ, Huang YF, Lin HM, Wei YL, Sol. Energy, 76(6), 745 (2004)
  14. Suntola T, Thin Solid Films, 216, 84 (1992)
  15. Suntola T, Mohai M, Sullivan JL, Saied SO, Appl. Surf. Sci., 84, 357 (1995)
  16. Du Y, Du X, George SM, Thin Solid Films, 491(1-2), 43 (2005)
  17. Sammelselg V, Rosental A, Tarre A, Niinisto L, Heiskanen K, Ilmonen K, Johansson LS, Uustare T, Appl. Surf. Sci., 134, 78 (1998)
  18. Williams DB, Carter CB, Transmission Electron Microscopy BasicsI, 1st ed., P.152-170, Plenum Press, NewYork, U.S.A. (1996). (1996)
  19. Nazeeruddin MK, Kay A, Rodicio I, Baker RH, Muller E, Liska P, Vlachopoulous N, Gratzel M, J. Am. Chem. Soc., 115, 6382 (1993)
  20. Jung SW, Kim KH, Park DH, Sohn BH, Jung JC, Zin WC, Hwang SH, Dhungel SK, Yoo JS, Yi J, Mater. Sci. Engin. C, 27, 1452 (2007)
  21. Ritala M, Leskela M, Niinisto L, Haussalo P, Chem. Mater., 5, 1174 (1993)
  22. Aarik J, Aidla A, Uustare T, Sammelselg V, J. Crys. Growth, 148, 268 (1995)
  23. Kumagai H, Matsumoto M, Toyoda K, Obara M, Suzuki M, Thin Solid Films, 263(1), 47 (1995)
  24. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-Ray Photoelectron Spectroscopy, 2nd ed., pp. 150-173, Perkin-Elmer Corp., Eden Praitie, MN, U.S.A. (1992). (1992)
  25. Luo M, Cheong K, Weng W, Song C, Du P, Shen G, Xu G, Han G, Mater. Lett.,
  26. Oertzen GU, Gerson AR, J. Phys. Chem. Solids, 68, 324 (2007)
  27. Aarik J, Aidla A, Kiisler AA, Uustare T, Sammelselg V, Thin Solid Films, 305(1-2), 270 (1997)