화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.12, 1261-1267, December, 2014
Entrapment characteristics of hydrosoluble vitamins loaded into chitosan and N,N,N-trimethyl chitosan nanoparticles
E-mail:
Nanoencapsulation is a process suitable for use in reducing degradation of instable components. In this study, chitosan and trimethyl chitosan with tripolyphosphate were used to nanoencapsulate vitamins C, B9, and B12. Analysis of the particle size showed that for a fix proportion of the polymer tripolyphosphate, the system showed a wide variation in size with the amount of added vitamins: e.g., for vitamin B9, the particle size varied from 150±5 nm to 809±150 nm. The zeta potential confirmed that trimethyl chitosan nanoparticles generally had a lower net positive charge (20 mV) than chitosan nanoparticles (40 mV). The encapsulation efficiency was found to be dependent on nanoparticle structure and vitamin solubility, with vitamin B9 the most efficiently encapsulated (approximately 40%). UV-Visible spectroscopy indicated different release profiles for vitamins C, B9, and B12 in a neutral PBS solution with release rates of 36%, 52%, and 16% after 2, 24, and 4 h, respectively. In conclusion the liberation was found to be slower in acidic media.
  1. Herrmann W, Obeid R, Vitamin in the Prevention of Human Diseases, De Gruyter, Berlin (2011)
  2. Report of a Joint FAO/WHO Expert Consultation, Vitamin and Mineral Requirements in Human Nutrition, World Health Organization, Bangkok (2004)
  3. Soliman AK, Jauncey K, Roberts RJ, Aquaculture, 60, 73 (1987)
  4. Abbas S, Da Wei C, Hayat K, Zhang XM, Food Rev. Int., 28, 343 (2012)
  5. Jang K, Lee HG, J. Agric. Food Chem., 56, 1936 (2008)
  6. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ, Food Chem., 126, 935 (2011)
  7. Madziva H, Kailasapathy K, Phillips M, J. Microencapsul., 22(4), 343 (2005)
  8. Matsumoto A, Kitazawa T, Murata J, Horikiri Y, Yamahara H, J. Control. Release, 129, 223 (2008)
  9. Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX, Braz. J. Chem. Eng., 28, 353 (2011)
  10. Bae JW, Go DH, Park KD, Lee SJ, Macromol. Res., 14(4), 461 (2006)
  11. Garcia-Fuentes M, Alonso MJ, J. Control. Release, 161, 496 (2012)
  12. Lee KY, Macromol. Res., 15(3), 195 (2007)
  13. Xu Y, Du Y, Huang R, Gao L, Biomaterials, 24, 5015 (2003)
  14. Slutter B, Jiskoot W, J. Control. Release, 148, 117 (2010)
  15. Benediktsdottira BE, Baldurssonb O, Masson M, J. Control. Release, 173, 18 (2014)
  16. de Britto D, Moura MR, Aouada FA, Mattoso LHC, Assis OBG, Food Hydrocol., 27, 487 (2012)
  17. de Britto D, Frederico FR, Assis OBG, Polym. Int., 60, 910 (2011)
  18. Gan Q, Wang T, Cochrane C, McCarron P, Colloids Surf. B, 44, 65 (2005)
  19. Song Y, Zhou J, Li Q, Guo Y, Zhang L, Macromol. Biosci., 9, 857 (2009)
  20. Gecer A, Yildiz N, Calimli A, Turan B, Macromol. Res., 18(10), 986 (2010)
  21. Gupta P, Vermani K, Garg S, Drug Discov. Today, 7, 569 (2002)
  22. Patil NS, Dordick JS, Rethwisch DG, Biomaterials, 17, 2343 (1996)
  23. Brazel CS, Peppas NA, Polymer, 40(12), 3383 (1999)
  24. Huang X, Brazel CS, J. Control. Release, 73, 121 (2001)
  25. Cai Y, Lapitsky Y, Colloids Surf. B, 115, 100 (2014)
  26. in Fundamentals and Applications of Controlled Release Drug Delivery, Siepmann J, Siegel RA, Rathbone MJ, Eds., Springer, London, Chap. 2 (2012)
  27. Chen C, Zhou JL, Han X, Song F, Wang XL, Wang YZ, Nanotechnology, 25, 255101 (2014)
  28. Siepmann J, Peppas NA, Adv. Drug Deliv. Rev., 48, 139 (2001)