Polymer(Korea), Vol.39, No.1, 157-164, January, 2015
질산성 질소 제거용 Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) 음이온교환막 제조와 관능화 조건
Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) Anion Exchange Membrane
E-mail:
초록
본 연구에서는 수중 질산성 질소(NO3-) 제거용 음이온교환막 제조를 위하여 poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene)(PVTD) 공중합체를 제조하고, quaternization 반응을 통하여 관능기를 도입하기 위한 최적화 반응온도, 반응시간, 관능화농도 조건을 규명하였다. 제조한 음이온교환막의 구조 확인과 분자량 측정을 위하여 FTIR, 1H NMR, 스펙트럼 분석과 GPC 분석을 하였다. 또한 제조한 음이온교환막의 함수율, 팽윤율, 전기저항, 이온교환용량과 같은 기본물성을 측정하였다. 또한 수중 질산염 제거율과 선택성을 확인하기 위하여 막의 음이온 투과성을 측정하여 질산성 질소의 선택성을 확인하였다. 최적 함수율, 전기저항, 이온교환용량은 각각 51.2%, 5.4 Ω·cm2, 1.04 meq/g으로 측정되었다.
In this study, we synthesized poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) (PVTD) copolymer and introduced functional group through quaternization reaction for removing nitrate from drinking water. Also, optimizing conditions (reaction time, reaction temperature and functionalized agents concentration) for introducing the functional group were confirmed. The basic properties such as water uptake, swelling ratio, electrical resistance, ion exchange capacity and anion permselectivity for removing nitrate from drinking water were measured. The optimal values of water uptake, electrical resistance and ion exchange capacity of synthesized anion exchange membrane were 51.2%, 5.4 Ω·cm2, and 1.04 meq/g, respectively.
- Bhatnagar A, Sillanpaa M, Chem. Eng. J., 168(2), 493 (2011)
- Song HO, Zhou Y, Li AM, Mueller S, Desalination, 296, 53 (2012)
- Ghafari S, Hasan M, Aroua MK, Bioresour. Technol., 99(10), 3965 (2008)
- Altintas O, Tor A, Cengeloglu Y, Ersoz M, Desalination, 239(1-3), 276 (2009)
- Mishra PC, Patel RK, J. Environ. Manage., 90, 519 (2009)
- Kesore K, Janowski F, Shaposhnik VA, J. Membr. Sci., 127(1), 17 (1997)
- Kimura K, Nakamura M, Watanabe Y, Water Res., 36, 1758 (2002)
- Kapoor A, Viraraghavan T, J. Environ. Eng., 123, 371 (1997)
- Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T, Bioresour. Technol., 95(3), 255 (2004)
- Alikhani M, Moghbeli MR, Chem. Eng. J., 239, 93 (2014)
- Ben Hamouda S, Touati K, Amor MB, Arab. J. Chem. (2012)
- Shams S, Assessing innovative technologies for nitrate removal from drinking water, Waterloo, Canada (2010)
- Ha KS, J. Environ. Eng., 19, 49 (1997)
- Xu TW, Li Y, Wu L, Yang WH, Sep. Purif. Technol., 60(1), 73 (2008)
- Xu TW, J. Membr. Sci., 263(1-2), 1 (2005)
- Hekmatzadeh AA, Karimi-Jashani A, Talebbeydokhti N, Klove B, Desalination, 284, 22 (2012)
- Guesmi F, Hannachi C, Hamrouni B, Can. J. Chem. Eng., 91(8), 1465 (2013)
- Sata T, Teshima K, Yamaguchi T, J. Polym. Sci. A: Polym. Chem., 34(8), 1475 (1996)
- Ariza MJ, Otero TF, J. Membr. Sci., 290(1-2), 241 (2007)
- Berbar Y, Amara M, Kerdjoudj H, Desalination, 223(1-3), 238 (2008)
- Park HM, Park SG, Hwang CW, Hwang TS, J. Membr. Sci., 447, 253 (2013)
- Hwang CW, Park HM, Oh CM, Hwang TS, Shim J, Jin CS, J. Membr. Sci., 468, 98 (2014)
- Bobrowski A, Grabowska B, Metall. Foundry Eng., 38, 73 (2012)
- Shoaib A, Akhtar N, Aftab NA, Pakistan J. Phytopathol., 25, 105 (2013)
- Sata T, Yamaguchi T, Matsusaki K, J. Phys. Chem., 99(34), 12875 (1995)
- Clifford D, Weber WJ, React. Polym. Ion Exch. Sorbents, 1, 77 (1983)