Clean Technology, Vol.2, No.1, 60-68, June, 1996
고정층 반응기에서 망간광석(NMD)을 이용한 저농도일산화탄소 산화특성
Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide(MND) in a Fixed Bed
초록
고정층 반응기에서 망간광석을 이용하여 저농도의 일산화탄소 산화제어반응에 대하여 고찰하였다. 고려된 실험변수는 일산화탄소 농도 (500ppm∼10000ppm), 산소 농도(500ppm∼99.8%)와 촉매의 온도(50∼750℃)이다. 또한 망간광석의 특성은 Thermogravimetric Analysis(TGA), 일산화탄소에 의한 환원, Temperature Programmed Reduction(TPR)실험을 이용하여 규명 하였다. 망간광석의 일산화탄소 산화력은 순수이산화망간에 비해서 단위 면적당 높은 산화력과 750℃까지 가열된 후에도 산화력이 유지될 수 있는 안정된 촉매작용을 보였다. Temperature Programmed Desorption(TPD), TPR 실험과 TG 등의 분석결과 산소의 농도가 낮거나 무산소하에서 망간광석의 격자내 산소가 쉽게 제공될 수 있음을 알 수 있었다. 일산화탄소의 농도가 500∼3500ppm일 때 일산화탄소의 반응차수는 0.701이며 3500∼10000ppm구간에서 일산화탄소의 농도에 무관한 0차 반응이었다.
The oxidation of carbon monoxide of low concentration on the natural manganese dioxide (NMD) has been investigated in a fixed bed reactor. The experimental variables wert concentration of oxygen (500ppm∼99.8%) and carbon monoxide (500ppm∼ 10000ppm) and catalyst temperature (50∼750℃). The NMD(Natural Manganese Dioxide) has been characterized by temperature - program reduction(TPR) using 2.4% CO/H2 as a reducing agent, thermogravimetric analysis (TGA), and reduction of NMD by 2.4% CO/H2. It was found that the NMD catalyst activity on the unit area was greater than the MnO2 catalyst for oxidationl of CO at the same temperature. The thermal stability of oxidation activity was considered to be maintained when the MND was heated to 750℃. The TGA, reduction by CO, and TPR of the NMD showed that the NMD had active lattice oxygen which was easily liberated on heating in the absence and low concentration of oxygen. The reaction order in CO is 0.701 between 500 ∼ 3500ppm and almost zero between 3500-10000ppm of CO.
- Crucq A, Frennet A, "Catalysis and Automotive Pollution Control," Elsevier, Amsterdam, 30, 155 (1987)
- Mark HF, Othmer DF, Overberger CG, Seaborg GT, "Encyclopedia of Chemical Technol.," 3rd Ed., John Wiley & Sons, 4, 790 (1978)
- Zafiris GS, Gorte RJ, J. Catal., 140, 418 (1993)
- Yao YFY, J. Catal., 87, 152 (1984)
- Yao YFY, Ind. Eng. Chem. Prod. Res. Dev., 19, 293 (1980)
- Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, Boston, 15 (1991)
- Park JS, Oh KJ, Park YU, Doh DS, J. KSEE, 17(5), 451 (1995)
- Stone FS, "Advances in Catalysis," 13, 274 (1962)
- Anderson JR, Boudart M, "Catalysis Science and Technology," Springer-Verlag, Berlin, 3, 108 (1982)
- Imamura S, Sawada A, Uemura K, Ishida S, J. Catal., 109, 198 (1988)
- Berlowit PJ, Peden CHF, Goodman DW, J. Phys. Chem., 92, 5213 (1988)
- Crucq A, Frennet A, "Catalysis and Automotive Pollution Control," Elsevier, Amsterdam, 30, 395 (1987)
- Masayoshi K, Hiroaki M, Haruo K, J. Catal., 21, 48 (1971)
- Masayoshi K, Haruo K, J. Catal., 27, 100 (1972)
- Masayoshi K, Haruo K, J. Catal., 27, 108 (1972)
- Books CS, J. Catal., 8, 272 (1967)
- Kordesch KV, "Batteries," Marcel Dekker, Inc., N.Y., 181 (1974)