화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 40-45, January, 2015
비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조
Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting
E-mail:
초록
혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 124o였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.
Simple poor-cosolvent casting was used to surface treat biodegradable elastic poly(L-lactide-co-ε-caprolactone) (PLCL; 50:50) copolymer films that presented lotus-leaf-like structures. We evaluated whether the lotus-leaflike-structured PLCL (L-PLCL) films could be used as a biomaterial for artificial vascular grafts. The surface morphology, hydrophobicity, and antithrombotic efficiency of the films were examined while immersed in platelet-rich plasma (PRP) using scanning electron microscopy (SEM) and a contact angle meter. The recovery and crystallinity of the films were measured using a tensile-strength testing machine and an X-ray diffractometer, respectively. The solvent containing acetic acid, as a poor co-solvent, and methylene chloride mixed in a 1:2 ratio produced an optimal PLCL film with a water contact angle of approximately 124o. Furthermore, the surface of the L-PLCL films immersed in PRP showed a lower rate of platelet adhesion (<10%) than that of the surface of an untreated PLCL film immersed in PRP.
  1. Agrawal CM, Haas KF, Leopold DA, Clark HG, Biomaterials, 13, 176 (1992)
  2. Chen G, Ushida T, Tateishi T, Mater. Sci. Eng. C, 17, 36 (2001)
  3. Shen H, Hu X, Yang F, Bei J, Wang S, Biomaterials, 28, 4219 (2007)
  4. Kim HI, Ishihara K, Lee S, Seo JH, Kim HY, Suh D, Kim MU, Konno T, Takai M, Seo JS, Biomaterials, 32, 2241 (2011)
  5. Shen H, Hu XX, Yang F, Bei JZ, Wang SG, Biomaterials, 4219, 28 (2007)
  6. Shen H, Hu XX, Yang F, Bei JZ, Wang SG, Acta Biomater., 6, 455 (2010)
  7. Yiann YP, in Structural and Dynamic Properties of Lipids and Membranes, Quinn PJ, Cherry R, Editors, Portland Press, London, p 187 (1992)
  8. Forbes CD, Courtney JM, Scott. Med. J., 40, 99 (1995)
  9. Courtney JM, Forbes CD, Br. Med. Bull., 50, 966 (1994)
  10. Lim JI, Kim SI, Jung Y, Kim SH, Polym.(Korea), 37(4), 411 (2013)
  11. Courtney JM, Lamba NMK, Sundaram S, Forbes CD, Biomaterials, 15, 737 (1994)
  12. Horbett TA, Cardiovasc. Pathol., 2, 137 (1993)
  13. Brash JL, Horbett TA, Proteins at Interfaces II, Brash JL, Horbett TA, Editors, ACS Symposium Series, American Chemical Society, Washington, DC, 602, 1 (1995)
  14. Tsai WB, Grunkemeier JM, Horbett TA, J. Biomed. Mater. Res., 44, 130 (1999)
  15. Shen YH, Shoichet MS, Radisic M, Acta Biomater., 4, 477 (2008)
  16. Kim YH, Park KD, Han DK, in Polymeric Materials Encyclopedia, Salamone JC, Editor, CRC Press, Boca Raton, 825 (1996)
  17. Olsson P, Sanchez J, Mollnes TE, Riesenfeld J, J. Biomater. Sci. Polym. Ed., 11, 1261 (2000)
  18. Wu H, Liao CY, Jiao QY, Wang Z, Cheng WZ, Wan Y, React. Funct. Polym., 72(7), 427 (2012)
  19. Zolnik BS, Burgess DJ, J. Control. Release, 127, 137 (2008)
  20. Gao L, McCarthy TJ, Langmuir, 25, 1410 (2009)
  21. Crick CR, Parkin IP, Chem. Eur. J., 16, 3568 (2010)
  22. Song WL, Veiga DD, Custodio CA, Mano JF, Adv. Mater., 21(18), 1830 (2009)
  23. Yan YY, Gao N, Barthlott W, Adv. Colloid Interface Sci., 169, 80 (2011)
  24. Ma M, Hill RM, Curr. Opin. Colloid Interface Sci., 11, 193 (2006)
  25. Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH, Biomaterials, 25, 5939 (2004)
  26. Kim SI, Lim JI, Lee BR, Mun CH, Jung Y, Kim SH, Colloids Surf. B: Biointerfaces, 114, 28 (2014)
  27. Zhou M, Yang J, Ye X, Zheng A, Li G, Yang P, Zhu Y, Cai L, J. Nano Res., 2, 129 (2008)
  28. Schwarzer HC, Peukert W, Chem. Eng. Sci., 60(1), 11 (2005)
  29. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W, J. Nanotechnol., 2, 152 (2011)