Polymer(Korea), Vol.39, No.1, 40-45, January, 2015
비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조
Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting
E-mail:
초록
혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 124o였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.
Simple poor-cosolvent casting was used to surface treat biodegradable elastic poly(L-lactide-co-ε-caprolactone) (PLCL; 50:50) copolymer films that presented lotus-leaf-like structures. We evaluated whether the lotus-leaflike-structured PLCL (L-PLCL) films could be used as a biomaterial for artificial vascular grafts. The surface morphology, hydrophobicity, and antithrombotic efficiency of the films were examined while immersed in platelet-rich plasma (PRP) using scanning electron microscopy (SEM) and a contact angle meter. The recovery and crystallinity of the films were measured using a tensile-strength testing machine and an X-ray diffractometer, respectively. The solvent containing acetic acid, as a poor co-solvent, and methylene chloride mixed in a 1:2 ratio produced an optimal PLCL film with a water contact angle of approximately 124o. Furthermore, the surface of the L-PLCL films immersed in PRP showed a lower rate of platelet adhesion (<10%) than that of the surface of an untreated PLCL film immersed in PRP.
Keywords:antithrombotic material;lotus-leaf-like structure;co-solvent system;blood vessel;surface modification.
- Agrawal CM, Haas KF, Leopold DA, Clark HG, Biomaterials, 13, 176 (1992)
- Chen G, Ushida T, Tateishi T, Mater. Sci. Eng. C, 17, 36 (2001)
- Shen H, Hu X, Yang F, Bei J, Wang S, Biomaterials, 28, 4219 (2007)
- Kim HI, Ishihara K, Lee S, Seo JH, Kim HY, Suh D, Kim MU, Konno T, Takai M, Seo JS, Biomaterials, 32, 2241 (2011)
- Shen H, Hu XX, Yang F, Bei JZ, Wang SG, Biomaterials, 4219, 28 (2007)
- Shen H, Hu XX, Yang F, Bei JZ, Wang SG, Acta Biomater., 6, 455 (2010)
- Yiann YP, in Structural and Dynamic Properties of Lipids and Membranes, Quinn PJ, Cherry R, Editors, Portland Press, London, p 187 (1992)
- Forbes CD, Courtney JM, Scott. Med. J., 40, 99 (1995)
- Courtney JM, Forbes CD, Br. Med. Bull., 50, 966 (1994)
- Lim JI, Kim SI, Jung Y, Kim SH, Polym.(Korea), 37(4), 411 (2013)
- Courtney JM, Lamba NMK, Sundaram S, Forbes CD, Biomaterials, 15, 737 (1994)
- Horbett TA, Cardiovasc. Pathol., 2, 137 (1993)
- Brash JL, Horbett TA, Proteins at Interfaces II, Brash JL, Horbett TA, Editors, ACS Symposium Series, American Chemical Society, Washington, DC, 602, 1 (1995)
- Tsai WB, Grunkemeier JM, Horbett TA, J. Biomed. Mater. Res., 44, 130 (1999)
- Shen YH, Shoichet MS, Radisic M, Acta Biomater., 4, 477 (2008)
- Kim YH, Park KD, Han DK, in Polymeric Materials Encyclopedia, Salamone JC, Editor, CRC Press, Boca Raton, 825 (1996)
- Olsson P, Sanchez J, Mollnes TE, Riesenfeld J, J. Biomater. Sci. Polym. Ed., 11, 1261 (2000)
- Wu H, Liao CY, Jiao QY, Wang Z, Cheng WZ, Wan Y, React. Funct. Polym., 72(7), 427 (2012)
- Zolnik BS, Burgess DJ, J. Control. Release, 127, 137 (2008)
- Gao L, McCarthy TJ, Langmuir, 25, 1410 (2009)
- Crick CR, Parkin IP, Chem. Eur. J., 16, 3568 (2010)
- Song WL, Veiga DD, Custodio CA, Mano JF, Adv. Mater., 21(18), 1830 (2009)
- Yan YY, Gao N, Barthlott W, Adv. Colloid Interface Sci., 169, 80 (2011)
- Ma M, Hill RM, Curr. Opin. Colloid Interface Sci., 11, 193 (2006)
- Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH, Biomaterials, 25, 5939 (2004)
- Kim SI, Lim JI, Lee BR, Mun CH, Jung Y, Kim SH, Colloids Surf. B: Biointerfaces, 114, 28 (2014)
- Zhou M, Yang J, Ye X, Zheng A, Li G, Yang P, Zhu Y, Cai L, J. Nano Res., 2, 129 (2008)
- Schwarzer HC, Peukert W, Chem. Eng. Sci., 60(1), 11 (2005)
- Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W, J. Nanotechnol., 2, 152 (2011)