화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.226, No.2, 231-236, 2000
Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge
The hydrophobic recovery of polydimethylsiloxane elastomers was studied after exposure to partial electrical discharge. Silicone elastomers that were thoroughly extracted of free oligomeric impurities as well as those deliberately contaminated with low molecular weight (LMW) silicone fluids were used for these studies. Contact angle and X-ray photoelectron spectroscopy revealed that the recovery rates of the oxidized extracted samples are strongly influenced by the applied voltage, humidity, and aging condition. The recovery rates increase considerably as the applied voltage and the humidity during discharge increase. Remarkably, the oxidized samples stored under high vacuum (10(-7) Torr) exhibit lower recovery rates than those aged in air. Free silicone fluid, when added to the elastomer, affects the recovery rate as well; however, significant recovery is seen even without any added fluid. These results imply that the LMW species that are formed in situ during electrical discharge are sufficient to cause the hydrophobic recovery of oxidized PDMS elastomers.