화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.7, 346-351, July, 2012
Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성
Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method
E-mail:
Li1+xAlxTi2-x(PO4)3(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents TiCl4. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at 500oC. A single crystalline phase of the LiTi2(PO4)3(LTP) system was obtained at a calcination temperature above 650oC. The obtained powder was pelletized and sintered at 900oC and 1000oC. The LTP sintered at 900~1000oC for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at 900oC for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of 4.50 × 10.5 S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at 1000oC decreased to 1.81 × 10.5 S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at 900oC for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to 300oC.
  1. Knauth P, Solid State Ion., 180(14-16), 911 (2009)
  2. Hiroo T, Hitoshi T, Mater. Trans., 53(5), 932 (2012)
  3. Fabry P, Gros JP, Million-Brodaz JF, Kleitz M, Sensor. Actuator., 15, 33 (1988)
  4. Xu XX, Wen ZY, Yang XL, Zhang JC, Gu ZH, Solid State Ion., 177(26-32), 2611 (2006)
  5. Iwahori T, Ozaki Y, Funahashi A, Momose H, Mitsuishi I, Shiraga S, Yoshitake S, Awata H, J. Power Sources, 81-82, 872 (1999)
  6. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD, Solid State Ion., 135(1-4), 33 (2000)
  7. Maldonado-Manso P, Losilla ER, Martinez-Lara M, Aranda MAG, Bruque S, Mouahid FE, Zahir M, Chem. Mater., 15, 1879 (2003)
  8. Fu J, J. Mater. Sci., 33(6), 1549 (1998)
  9. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 137, 1023 (1990)
  10. Arbi K, Mandal S, Rojo JM, Sanz J, Chem. Mater., 14, 1091 (2002)
  11. Thokchom JS, Kumar B, Solid State Ion., 177(7-8), 727 (2006)
  12. Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL, Ionics, 14, 303 (2008)
  13. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 140, 1827 (1993)
  14. Xu XX, Wen ZY, Wu JG, Yang XL, Solid State Ion., 178(1-2), 29 (2007)
  15. Cretin M, Fabry P, J. Eur. Ceram. Soc., 19, 2931 (1999)
  16. Wu XM, Liu JL, Chen S, Ma MY, Liu JB, Ionics, 16, 827 (2010)
  17. Wu XM, Li XH, Zhang YH, Xu MF, He ZQ, Mater. Lett., 58, 1227 (2004)
  18. Brinker CJ, Scherer GW, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, p. 745-786,Academic Press, Boston, USA (1990). (1990)
  19. Narvaez-Semanate JL, Rodrigues ACM, Solid State Ion., 181(25-26), 1197 (2010)
  20. Maier J, Solid State Ion., 131(1-2), 13 (2000)
  21. Schoonman J, Solid State Ion., 135(1-4), 5 (2000)
  22. Heitjans P, Indris S, J. Phys. Condens. Matter., 15, R1257 (2003)