Korean Journal of Materials Research, Vol.22, No.7, 346-351, July, 2012
Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성
Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method
E-mail:
Li1+xAlxTi2-x(PO4)3(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents TiCl4. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at 500oC. A single crystalline phase of the LiTi2(PO4)3(LTP) system was obtained at a calcination temperature above 650oC. The obtained powder was pelletized and sintered at 900oC and 1000oC. The LTP sintered at 900~1000oC for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at 900oC for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of 4.50 × 10.5 S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at 1000oC decreased to 1.81 × 10.5 S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at 900oC for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature
to 300oC.
- Knauth P, Solid State Ion., 180(14-16), 911 (2009)
- Hiroo T, Hitoshi T, Mater. Trans., 53(5), 932 (2012)
- Fabry P, Gros JP, Million-Brodaz JF, Kleitz M, Sensor. Actuator., 15, 33 (1988)
- Xu XX, Wen ZY, Yang XL, Zhang JC, Gu ZH, Solid State Ion., 177(26-32), 2611 (2006)
- Iwahori T, Ozaki Y, Funahashi A, Momose H, Mitsuishi I, Shiraga S, Yoshitake S, Awata H, J. Power Sources, 81-82, 872 (1999)
- Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD, Solid State Ion., 135(1-4), 33 (2000)
- Maldonado-Manso P, Losilla ER, Martinez-Lara M, Aranda MAG, Bruque S, Mouahid FE, Zahir M, Chem. Mater., 15, 1879 (2003)
- Fu J, J. Mater. Sci., 33(6), 1549 (1998)
- Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 137, 1023 (1990)
- Arbi K, Mandal S, Rojo JM, Sanz J, Chem. Mater., 14, 1091 (2002)
- Thokchom JS, Kumar B, Solid State Ion., 177(7-8), 727 (2006)
- Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL, Ionics, 14, 303 (2008)
- Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 140, 1827 (1993)
- Xu XX, Wen ZY, Wu JG, Yang XL, Solid State Ion., 178(1-2), 29 (2007)
- Cretin M, Fabry P, J. Eur. Ceram. Soc., 19, 2931 (1999)
- Wu XM, Liu JL, Chen S, Ma MY, Liu JB, Ionics, 16, 827 (2010)
- Wu XM, Li XH, Zhang YH, Xu MF, He ZQ, Mater. Lett., 58, 1227 (2004)
- Brinker CJ, Scherer GW, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, p. 745-786,Academic Press, Boston, USA (1990). (1990)
- Narvaez-Semanate JL, Rodrigues ACM, Solid State Ion., 181(25-26), 1197 (2010)
- Maier J, Solid State Ion., 131(1-2), 13 (2000)
- Schoonman J, Solid State Ion., 135(1-4), 5 (2000)
- Heitjans P, Indris S, J. Phys. Condens. Matter., 15, R1257 (2003)