화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.1, 1-6, January, 2013
열산화법을 이용한 산화구리 나노선 수직성장
Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation
E-mail:
A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of 1~25 μm. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
  1. Ji B, Gao H, J. Mech. Phys. Solids, 52(9), 1963 (2004)
  2. Jersch J, Dickmann K, Appl. Phys. Lett., 68(6), 868 (1996)
  3. Kim YS, Hwang IS, Kim SJ, Lee CY, Lee JH, Sens. Actuators, B, 135(1), 298 (2008)
  4. Liao L, Zhang Z, Yan B, Zheng Z, Bao Ql, Wu T, Li CM, Shen ZX, Zhang JX, Gong H, Li JC, Yu T, Nanotechnology, 20(8), 085203 (2009)
  5. Chen J, Wang K, Hartman L, Zhou W, J. Phys. Chem. C, 112(41), 16017 (2008)
  6. Hoa ND, Quy NV, Jung H, Kim D, Kim H, Hong SK, Sens. Actuators, B, 146(1), 266 (2010)
  7. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL, Appl. Phys. Lett., 84(18), 3654 (2004)
  8. Kolmakov A, Zhang YX, Cheng GS, Moskovits M, Adv. Mater., 15(12), 997 (2003)
  9. Lu CY, Chang SP, Chang SJ, Hsueh TJ, Hsu CL, Chiou YZ, Chen IC, IEEE Sens. J., 9(4), 485 (2009)
  10. Anandan S, Wen XG, Yang SH, Mater. Chem. Phys., 93(1), 35 (2005)
  11. Law M, Greene LE, Johnson JC, Saykally R, Yang PD, Nat. Mater., 4(6), 455 (2005)
  12. Baxter JB, Aydil ES, Appl. Phys. Lett., 86(5), 053114 (2005)
  13. Wang X, Ozkan CS, Nano Lett., 8(2), 398 (2008)
  14. Zhang GJ, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim EJA, Kang TG, Chen Y, Sens. Actuators, B, 146(1), 138 (2010)
  15. Fang Z, Kelley SO, Anal. Chem., 81(2), 612 (2009)
  16. Hahm JI, Lieber CM, Nano Lett., 4(1), 51 (2004)
  17. Wagner RS, Ellis WC, Appl. Phys. Lett., 4(5), 89 (1964)
  18. Gu G, Zheng B, Han WQ, Roth S, Liu J, Nano Lett., 2(8), 849 (2002)
  19. Feng S, Xu R, Acc. Chem. Res., 34(3), 239 (2001)
  20. Reitz JB, Solomon EI, J. Am. Chem. Soc., 120(44), 11467 (1998)
  21. Jiang X, Herricks T, Xia Y, Nano Lett., 2(12), 1333 (2002)