화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.5, 260-265, May, 2013
CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향
Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis
E-mail:,
Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via CO2 laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In CO2 laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the CO2 laser matches the absorption cross section of silane. Silane absorbs the CO2 laser energy at a wavelength of 10.6 μm. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.
  1. Gupta A, Swihart MT, Wiggers H, Adv. Funct. Mater., 19(5), 696 (2009)
  2. Cheng KY, Anthony R, Kortshagen UR, Holmes RJ, Nano Lett., 11, 1952 (2011)
  3. Liu CY, Holman ZC, Kortshagen UR, Adv. Funct. Mater., 20(13), 2157 (2010)
  4. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ, Nat. Mater., 8(4), 331 (2009)
  5. Gaffet E, Harmelin M, J. Less-Common Met., 157, 201 (1990)
  6. Bley RA, Kauzlarich SM, J. Am. Chem. Soc., 118(49), 12461 (1996)
  7. Holman ZC, Kortshagen UR, Nanotechnology, 21, 335302 (2010)
  8. Mangolini L, Thimsen E, Kortshagen U, Nano Lett., 5, 655 (2005)
  9. Scriba MR, Britton DT, Arendse C, van Staden MJ, Harting M, Thin Solid Films, 517(12), 3484 (2009)
  10. Li XG, He YQ, Swihart MT, Langmuir, 20(11), 4720 (2004)
  11. Huisken F, Ledoux G, Guillois O, Reynaud C, Adv. Mater., 14(24), 1861 (2002)
  12. Li XG, He YQ, Talukdar SS, Swihart MT, Langmuir, 19(20), 8490 (2003)
  13. Hermans PH, Weidinger A, Macromol. Chem. Phys., 44, 24 (1961)
  14. Flint J, Haggerty J, Aerosol Sci. Tech., 13, 72 (1990)
  15. Ogut S, Chelikowsky JR, Louie SG, Phys. Rev. Lett., 79, 1770 (1997)