화학공학소재연구정보센터
Clean Technology, Vol.20, No.4, 425-432, December, 2014
Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2 and Purified H2 Production in a Water Gas Shift Reaction
E-mail:
초록
이 논문은 촉매막반응기(catalytic membrane reactor)에서의 중요한 두 요소인 수소선택도와 수소투과량 및 Ar sweep 유량과 압력이 수성가스전이반응의 성능에 미치는 영향에 대하여 1차원 반응기모델과 반응속도식에 근거한 연구결과를 나타내고 있다. 연소전 이산화탄소 포집의 한 방법으로서, 촉매막반응기를 사용하여 원통부분에서는 고압/고농도의 이산화탄소를 관부분에서는 고순도의 수소를 동시에 얻을 수 있는지에 대한 가능성을 검토하였다. 또한, 고농도의 이산화탄소와 고순도의 수소를 동시에 얻기 위해 필요한 수소투과량, 수소선택도, Ar sweep 유량 및 압력에 대한 지침을 나타내었다. 그 결과 1 × 10-8 molm-2s-1Pa-1의 수소투과량과 10000의 수소선택도를 가진 막을 장착한 촉매막반응기에서는 8 atm의 압력과 6.7 × 10-4 mols-1의 Ar sweep 유량의 조건하에서 약 90%의 농도를 가진 이산화탄소와 100%의 순도를 가진 수소가 동시에 얻어짐이 밝혀졌다.
The effect of two important parameters of a catalytic membrane reactor (CMR), hydrogen selectivity and hydrogen permeance, coupled with an Ar sweep flow and an operating pressure on the performance of a water gas shift reaction in a CMR has been extensively studied using a one-dimensional reactor model and reaction kinetics. As an alternative pre-combustion CO2 capture method, the feasibility of capturing a pressurized and concentrated CO2 in a retentate (a shell side of a CMR) and separating a purified H2 in a permeate (a tube side of a CMR) simultaneously in a CMR was examined and a guideline for a hydrogen permeance, a hydrogen selectivity, an Ar sweep flow rate, and an operating pressure to achieve a simultaneous capture of a concentrate CO2 in a retentate and production of a purified H2 in a permeate is presented. For example, with an operating pressure of 8 atm and Ar sweep gas for rate of 6.7 × 10-4 mols-1, a concentrated CO2 in a retentate (~90%) and a purified H2 in a permeate (~100%) was simultaneously obtained in a CMR fitted with a membrane with hydrogen permeance of 1 × 10-8 mol m-2s-1Pa-1 and a hydrogen selectivity of 10000.
  1. Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187 (2013)
  2. Ertesvag IS, Kvamsdal HM, Bolland O, Energy, 30(1), 5 (2005)
  3. Park SK, Kim TS, Sohn JL, Lee YD, Appl. Energy, 88(4), 1187 (2011)
  4. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
  5. Chikukwa A, Enaasen N, Kvamsdal HM, Hillestad M, Energy Procedia, 23, 82 (2012)
  6. Sanchez Marcano JG, Tsotsis TT, Catalytic Membranes and Membrane Reactors, 1st ed., WILEY-VCH, Weinheim, p. 5. (2002)
  7. Lee D, Hacarlioglu P, Oyama ST, Top. Catal., 29, 45 (2004)
  8. Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, AIChE J., 50(11), 2794 (2004)
  9. Lee DW, Nam SE, Sea B, Ihm SK, Lee KH, Catal. Today, 118(1-2), 198 (2006)
  10. Lim H, Gu YF, Oyama ST, J. Membr. Sci., 396, 119 (2012)
  11. Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 250 (2008)
  12. Lim H, Clean Technol., 19(4), 379 (2013)
  13. Kikuchi E, Catal. Today, 56(1-3), 97 (2000)
  14. Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng. J., 93(1), 23 (2003)
  15. Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
  16. Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351 (2009)
  17. Smith BRJ, Loganathan M, Shantha MS, Int. J. Chem. React. Eng., 8, 1 (2010)
  18. Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH, Catal. Today, 123(1-4), 224 (2007)
  19. Pizzi D, Worth R, Baschetti MG, Sarti GC, Noda K, J. Membr. Sci., 325(1), 446 (2008)
  20. Dunbar ZW, Chu D, J. Power Sources, 217, 47 (2012)