Clean Technology, Vol.20, No.4, 425-432, December, 2014
Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2 and Purified H2 Production in a Water Gas Shift Reaction
E-mail:
초록
이 논문은 촉매막반응기(catalytic membrane reactor)에서의 중요한 두 요소인 수소선택도와 수소투과량 및 Ar sweep 유량과 압력이 수성가스전이반응의 성능에 미치는 영향에 대하여 1차원 반응기모델과 반응속도식에 근거한 연구결과를 나타내고 있다. 연소전 이산화탄소 포집의 한 방법으로서, 촉매막반응기를 사용하여 원통부분에서는 고압/고농도의 이산화탄소를 관부분에서는 고순도의 수소를 동시에 얻을 수 있는지에 대한 가능성을 검토하였다. 또한, 고농도의 이산화탄소와 고순도의 수소를 동시에 얻기 위해 필요한 수소투과량, 수소선택도, Ar sweep 유량 및 압력에 대한 지침을 나타내었다. 그 결과 1 × 10-8 molm-2s-1Pa-1의 수소투과량과 10000의 수소선택도를 가진 막을 장착한 촉매막반응기에서는 8 atm의 압력과 6.7 × 10-4 mols-1의 Ar sweep 유량의 조건하에서 약 90%의 농도를 가진 이산화탄소와 100%의 순도를 가진 수소가 동시에 얻어짐이 밝혀졌다.
The effect of two important parameters of a catalytic membrane reactor (CMR), hydrogen selectivity and hydrogen permeance, coupled with an Ar sweep flow and an operating pressure on the performance of a water gas shift reaction in a CMR has been extensively studied using a one-dimensional reactor model and reaction kinetics. As an alternative pre-combustion CO2
capture method, the feasibility of capturing a pressurized and concentrated CO2 in a retentate (a shell side of a CMR) and separating a purified H2 in a permeate (a tube side of a CMR) simultaneously in a CMR was examined and a guideline for a hydrogen permeance, a hydrogen selectivity, an Ar sweep flow rate, and an operating pressure to achieve a simultaneous capture
of a concentrate CO2 in a retentate and production of a purified H2 in a permeate is presented. For example, with an operating pressure of 8 atm and Ar sweep gas for rate of 6.7 × 10-4 mols-1, a concentrated CO2 in a retentate (~90%) and a purified H2 in a permeate (~100%) was simultaneously obtained in a CMR fitted with a membrane with hydrogen permeance of 1 × 10-8 mol m-2s-1Pa-1 and a hydrogen selectivity of 10000.
Keywords:Catalytic membrane reactor;Water gas shift reaction;Pre-combustion CO2 capture;Hydrogen selectivity;Hydrogen permeance
- Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187 (2013)
- Ertesvag IS, Kvamsdal HM, Bolland O, Energy, 30(1), 5 (2005)
- Park SK, Kim TS, Sohn JL, Lee YD, Appl. Energy, 88(4), 1187 (2011)
- Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
- Chikukwa A, Enaasen N, Kvamsdal HM, Hillestad M, Energy Procedia, 23, 82 (2012)
- Sanchez Marcano JG, Tsotsis TT, Catalytic Membranes and Membrane Reactors, 1st ed., WILEY-VCH, Weinheim, p. 5. (2002)
- Lee D, Hacarlioglu P, Oyama ST, Top. Catal., 29, 45 (2004)
- Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, AIChE J., 50(11), 2794 (2004)
- Lee DW, Nam SE, Sea B, Ihm SK, Lee KH, Catal. Today, 118(1-2), 198 (2006)
- Lim H, Gu YF, Oyama ST, J. Membr. Sci., 396, 119 (2012)
- Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 250 (2008)
- Lim H, Clean Technol., 19(4), 379 (2013)
- Kikuchi E, Catal. Today, 56(1-3), 97 (2000)
- Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng. J., 93(1), 23 (2003)
- Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
- Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351 (2009)
- Smith BRJ, Loganathan M, Shantha MS, Int. J. Chem. React. Eng., 8, 1 (2010)
- Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH, Catal. Today, 123(1-4), 224 (2007)
- Pizzi D, Worth R, Baschetti MG, Sarti GC, Noda K, J. Membr. Sci., 325(1), 446 (2008)
- Dunbar ZW, Chu D, J. Power Sources, 217, 47 (2012)