화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.11, 631-637, November, 2013
화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성
Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination
E-mail:
Synthesis of sub-micron 2SnO·(H2O) powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the 2SnO·(H2O) powders. In the synthesis of the 2SnO·(H2O) powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized 2SnO·(H2O) powders. A holding time of 1 hr in air at 500 oC sufficiently transformed the 2SnO·(H2O) into SnO2 phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at 700 oC. Hence, heating for 1 h at 500 oC made a porous SnO2 film containing residual PVP, whereas dense SnO2 films with no significant amount of PVP formed after heating for 1 h at 700 oC.
  1. Phani AR, Manorama S, Rao VJ, Mater. Chem. Phys., 58, 101 (1999)
  2. Wada K, Egashira M, Sens. Actuators B, 53, 147 (1998)
  3. Lee SC, Lee JH, Oh TS, Kim YH, Sol. Energy Mater. Sol. Cells, 75(3-4), 481 (2003)
  4. Paek SM, Yoo EJ, Honma I, Nano Lett., 9(1), 72 (2009)
  5. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L, Nanotechnology, 20, 455602 (2009)
  6. Brown JR, Cheney MT, Haycock PW, Houlton DJ, Jones AC, Williams EW, J. Electrochem. Soc., 144(1), 295 (1997)
  7. Park SH, Son YC, Willis WS, Suib SL, Creasy KE, Chem. Mater., 10, 2389 (1998)
  8. Song KC, Kim JH, J. Colloid Interface Sci., 212(1), 193 (1999)
  9. Pan Q, Dong X, Zhang J, He L, Wuji Cailiao Xuebao, 12, 494 (1997)
  10. Dieguez A, Romano-Rodriguez A, Morante JR, Kappler J, Barsan N, Gopel W, Sens. Actuators B, 60, 125 (1999)
  11. Kim ID, Jeon EK, Choi SH, Choi DK, Tuller HL, J. Electroceram., 25, 159 (2010)
  12. Baik NS, Sakai G, Miura N, Yamazoe N, J. Am. Ceram. Soc., 83(12), 2983 (2000)
  13. Shoyama M, Hashimoto N, Sens. Actuators B, 93, 585 (2003)
  14. Zhang DL, Deng ZB, Zhang JB, Chen LY, Mater. Chem. Phys., 98(2-3), 353 (2006)
  15. Hsiao LY, Duh JG, Adv. Mater. Res., 685, 63 (2013)
  16. Chee SS, Lee JH, Electron. Mater. Lett., 8(6), 587 (2012)
  17. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J, Adv. Funct. Mater., 18(5), 679 (2008)
  18. Chen DP, Qiao XL, Qiu XL, Chen JG, J. Mater. Sci., 44(4), 1076 (2009)
  19. Yao KX, Zeng HC, J. Phys. Chem. C, 111, 13301 (2007)
  20. Bonte F, Tekaia-Elhsissen K, Sarathy KV, Bull. Mater. Sci., 23, 165 (2000)
  21. Zhang Y, Liu JY, Ma S, Zhang YJ, Zhao X, Zhang XD, Zhang ZD, J. Mater. Sci. Mater. Med., 21, 1205 (2010)
  22. Zhang Z, Zhao B, Hu L, J. Solid State Chem., 121, 105 (1996)
  23. Hara S, Sakamoto H, Miyayama M, Kudo T, Solid State Ionics, 154-155, 679 (2002)
  24. Mecheri B, D'Epifanio A, Traversa E, Licoccia S, J. Power Sources, 178(2), 554 (2008)
  25. Pramanik NC, Das S, Biswas PK, Mater. Lett., 56, 671 (2002)
  26. Du YK, Yang P, Mou ZG, Hua NP, Jiang L, J. Appl. Polym. Sci., 99(1), 23 (2006)