Korean Journal of Chemical Engineering, Vol.32, No.1, 79-87, January, 2015
Biocrude oil production and nutrient recovery from algae by two-step hydrothermal liquefaction using a semi-continuous reactor
E-mail:
We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutrients and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.
- Demirbas A, Appl. Energy, 88(1), 17 (2011)
- Demirbas MF, Appl. Energy, 88(10), 3473 (2011)
- Singh A, Olsen SI, Appl. Energy, 88(10), 3548 (2011)
- Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energy Rev., 14, 578 (2010)
- Lam MK, Lee KT, Biotech. Adv., 30, 673 (2012)
- Amaro HM, Macedo AC, Malcata FX, Energy, 44(1), 158 (2012)
- Akhtar J, Amin NAS, Renew. Sust. Energy Rev., 15, 1615 (2011)
- Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295 (2011)
- Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221 (2011)
- Peterson AA, Vogel F, Lachance RP, Froling M, Michael J, Antal J, Tester JW, Energ. Environ. Sci., 1, 32 (2008)
- Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876 (2011)
- Jena U, Vaidyanathan N, Chinnasamy S, Das KC, Bioresour. Technol., 102(3), 3380 (2011)
- Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA, Algal Research, 1, 70 (2012)
- Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ, Bioresour. Technol., 109, 178 (2012)
- Chakraborty M, Miao C, McDonald A, Chen SL, Fuel, 95(1), 63 (2012)
- U.S. DOE, National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program (2010)
- Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu KL, Stork J, Debolt S, Renew. Energy, 60, 625 (2013)
- Brunner G, J. Supercrit. Fluids, 47(3), 373 (2009)
- Du ZY, Mohr M, Ma XC, Cheng YL, Lin XG, Liu YH, Zhou WG, Chen P, Ruan R, Bioresour. Technol., 120, 13 (2012)
- Kang KY, Chun BS, Korean J. Chem. Eng., 21(3), 654 (2004)
- Kang KY, Chun BS, Korean J. Chem. Eng., 21(6), 1147 (2004)
- Valdez PJ, Nelson MC, Wang HY, Lin XXNN, Savage PE, Biomass Bioenerg., 46, 317 (2012)
- Lopez CVG, Garcia MDC, Fernandez FGA, Bustos CS, Chisti Y, Sevilla JMF, Bioresour. Technol., 101(19), 7587 (2010)
- Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
- Bower CE, Holm-Hassen T, Can. J. Fish. Aquat. Sci., 37, 794 (1980)
- APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation), Standard Methods for the Examination of Water and Wastewater, Colorado (1998)
- Montgomery DC, Design and analysis of experiments, Wiley, New York, USA (1972)
- Akiya N, Savage PE, Chem. Rev., 102(8), 2725 (2002)