화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.1, 79-87, January, 2015
Biocrude oil production and nutrient recovery from algae by two-step hydrothermal liquefaction using a semi-continuous reactor
E-mail:
We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutrients and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.
  1. Demirbas A, Appl. Energy, 88(1), 17 (2011)
  2. Demirbas MF, Appl. Energy, 88(10), 3473 (2011)
  3. Singh A, Olsen SI, Appl. Energy, 88(10), 3548 (2011)
  4. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energy Rev., 14, 578 (2010)
  5. Lam MK, Lee KT, Biotech. Adv., 30, 673 (2012)
  6. Amaro HM, Macedo AC, Malcata FX, Energy, 44(1), 158 (2012)
  7. Akhtar J, Amin NAS, Renew. Sust. Energy Rev., 15, 1615 (2011)
  8. Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295 (2011)
  9. Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221 (2011)
  10. Peterson AA, Vogel F, Lachance RP, Froling M, Michael J, Antal J, Tester JW, Energ. Environ. Sci., 1, 32 (2008)
  11. Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876 (2011)
  12. Jena U, Vaidyanathan N, Chinnasamy S, Das KC, Bioresour. Technol., 102(3), 3380 (2011)
  13. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA, Algal Research, 1, 70 (2012)
  14. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ, Bioresour. Technol., 109, 178 (2012)
  15. Chakraborty M, Miao C, McDonald A, Chen SL, Fuel, 95(1), 63 (2012)
  16. U.S. DOE, National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program (2010)
  17. Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu KL, Stork J, Debolt S, Renew. Energy, 60, 625 (2013)
  18. Brunner G, J. Supercrit. Fluids, 47(3), 373 (2009)
  19. Du ZY, Mohr M, Ma XC, Cheng YL, Lin XG, Liu YH, Zhou WG, Chen P, Ruan R, Bioresour. Technol., 120, 13 (2012)
  20. Kang KY, Chun BS, Korean J. Chem. Eng., 21(3), 654 (2004)
  21. Kang KY, Chun BS, Korean J. Chem. Eng., 21(6), 1147 (2004)
  22. Valdez PJ, Nelson MC, Wang HY, Lin XXNN, Savage PE, Biomass Bioenerg., 46, 317 (2012)
  23. Lopez CVG, Garcia MDC, Fernandez FGA, Bustos CS, Chisti Y, Sevilla JMF, Bioresour. Technol., 101(19), 7587 (2010)
  24. Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
  25. Bower CE, Holm-Hassen T, Can. J. Fish. Aquat. Sci., 37, 794 (1980)
  26. APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation), Standard Methods for the Examination of Water and Wastewater, Colorado (1998)
  27. Montgomery DC, Design and analysis of experiments, Wiley, New York, USA (1972)
  28. Akiya N, Savage PE, Chem. Rev., 102(8), 2725 (2002)