화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.3, 129-134, March, 2014
Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding
E-mail:
Pure MgH2 was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the MgH2 after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar H2. The initial hydriding rate of MgH2 after RMG at 423 K under 12 bar H2 was the highest (0.08 wt% H/min) at n = 2. At n = 2, the MgH2 after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar H2. At 573 K under 12 bar H2, the MgH2 after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar H2, the MgH2 after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the MgH2 after RMG at a relatively low temperature of 423 K.
  1. Song MY, Kwak YJ, Lee BS, Park HR, Kim BG, Kor. J. Met. Mater., 49(12), 989 (2011)
  2. Hong SH, Kwon SN, Song MY, Kor. J. Met. Mater., 49(4), 298 (2011)
  3. Kim KI, Hong TW, Kor. J. Met. Mater., 49(3), 264 (2011)
  4. Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
  5. Reilly JJ, Wiswall RH, Inorg. Chem., 7(11), 2254 (1968)
  6. Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrogen Energy, 7(10), 787 (1982)
  7. Mintz MH, Gavra Z, Hadari Z, J. Inorg. Nucl. Chem., 40(5), 765 (1978)
  8. Zhong HC, Wang H, Ouyang LZ, Zhu M, J. Alloys Compd., 509(11), 4268 (2011)
  9. Pei P, Song XP, Liu J, Song A, Zhang PL, Chen GL, Int. J. Hydrog. Energy, 37(1), 984 (2012)
  10. Li ZN, Liu XP, Jiang LJ, Wang SM, Int. J. Hydrog. Energy, 32(12), 1869 (2007)
  11. Boulet JM, Gerard N, J. Less-Common Met., 89(1), 151 (1983)
  12. Lucaci M, Biris AR, Orban RL, Sbarcea GB, Tsakiris V, J. Alloys Compd., 488(1), 163 (2009)
  13. Li Z, Liu X, Huang Z, Jiang L, Wang S, Rare Metals, Supplement 1, 25(6), 247 (2006)
  14. Aminorroaya S, Ranjbar A, Cho YH, Liu HK, Dahle AK, Int. J. Hydrog. Energy, 36(1), 571 (2011)
  15. Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A, Intermetallics, 18(2), 203 (2010)
  16. Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P, Mater. Res. Bull., 11(11), 1441 (1976)
  17. Eisenberg FG, Zagnoli DA, Sheridan III JJ, J. Less-Common Met., 74(2), 323 (1980)
  18. Mao JF, Guo ZP, Yu XB, Liu HK, Wu Z, Ni J, Int. J. Hydrog. Energy, 35(10), 4569 (2010)
  19. Cermak J, David B, Int. J. Hydrog. Energy, 36(21), 13614 (2011)
  20. Chen D, Wang YM, Chen L, Liu S, Ma CX, Wang LB, Acta Materialia, 52(2), 521 (2004)
  21. Matovic L, Kurko S, Raskovic-Lovre Z, Vujasin R, Milanovic I, Milosevic S, Novakovic JG, Int. J. Hydrog. Energy, 37(8), 6727 (2012)
  22. Song MY, Baek SH, Bobet JL, Park HR, Kim BG, Met. Mater. Int., 19(2), 237 (2013)
  23. Bobet JL, Chevalier B, Song MY, Darriet B, J. Alloys Compd., 356-357, 570 (2003)
  24. Song MY, Kwak YJ, Lee SH, Park HR, Kim BG, Met. Mater. Int., 19(4), 879 (2013)
  25. Song MY, Baek SH, Bobet JL, Hong SH, Int. J. Hydrog. Energy, 35(19), 10366 (2010)