화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.5, 259-265, May, 2014
알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성
Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties
E-mail:
ZrO2 films were coated on aluminum etching foil by the sol-gel method to apply ZrO2 as a dielectric material in an aluminum(Al) electrolytic capacitor. ZrO2 films annealed above 450 oC appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The ZrO2 films annealed at 500 oC exhibited a dielectric constant of 33 at 1 kHz. Also, uniform ZrO2 tunnels formed in Al etch-pits 1 μm in diameter. However, ZrO2 film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, ZrO2-coated Al etching foils were anodized at 300 V. After being anodized, the Al2O3 film grew in the directions of both the Al-metal matrix and the ZrO2 film, and the ZrO2-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the ZrO2-coated Al foil exhibited only a small increase because the thickness of the Al2O3 film was 4-5 times thicker than that of ZrO2 film.
  1. Alwitt RS, Uchi H, Beck TR, Alkire RC, J. Electrochem. Soc., 131, 13 (1984)
  2. Takahashi H, Nagayama M, Electrochim. Acta, 23, 279 (1978)
  3. Shikanai M, Sakairi M, Takahashi H, Seo M, Takahiro K, Nagata S, Yamaguchi S, J. Electrochem. Soc., 144(8), 2756 (1997)
  4. Watanabe K, Sakairi M, Takahashi H, Hirai S, Yamaguchi S, J. Electroanal. Chem., 473(1-2), 250 (1999)
  5. Watanabe K, Sakairi M, Takahashi H, Takahiro K, Nagata S, Hirai S, Electrochemistry, 67, 1243 (1999)
  6. Park SS, Lee BT, J Electroceramics., 13, 111 (2004)
  7. Ivanova T, Harizanova A, Koutzarova T, Krins N, Vertruyen B, Mater. Sci. Eng. B, 165, 212 (2009)
  8. Cueto LF, Sanchez E, Torres-Martinez LM, Hirata GA, Mater. Charact., 55, 263 (2005)
  9. Joy K, Berlin IJ, Nair PB, Lakshmi JS, Daniel GP, Thomas PV, J. Phys. Chem. Solids, 72, 673 (2011)
  10. Attia SM, Wang J, Wu G, Shen J, Ma J, J. Mater. Sci. Technol., 18(3), 211 (2002)
  11. Brinker J, Frey GC, Hurd AJ, Ashley CS, Thin Solid Films, 201, 97 (1991)
  12. Ma CY, Lapostolle F, Briois P, Zhang QY, Appl. Surf. Sci., 253(21), 8718 (2007)
  13. Kuei PY, Chou JD, Huang CT, Ko HH, Su SC, J. Cryst. Growth, 314(1), 81 (2011)
  14. Jeong JH, Choi CH, Oh KH, Lee DN, J. Kor. Inst. Met. & Mater., 32, 378 (1994)
  15. Shimizu K, Thompson GE, Wood GC, Thin Solid Films, 81, 39 (1981)
  16. XU Y, Thompson GE, Wood GC, Bethune B, Corros. Sci., 27(1), 83 (1987)
  17. Kudo T, Alwitt RS, Electrochim. Acta, 23, 341 (1978)
  18. Takahashi H, Ikegami C, Seo M, Furuichi R, J. Electron Microsc., 40, 101 (1991)