Korean Journal of Materials Research, Vol.24, No.8, 423-428, August, 2014
복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성
Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property
E-mail:
We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at 500 oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition, the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3 NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2 lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
Keywords:Fe-doped TiO2;α-Fe2O3 nanoparticles;core/shell nanowires;co-electrospinning;magnetic property
- Dobson J, Drug Dev. Res., 67, 55 (2006)
- Dronskowski R, Adv. Funct. Mater., 11(1), 27 (2001)
- Wiemann JA, Carpenter EE, Wiggins J, Zhou W, Tang J, LI S, John VT, Long GJ, Mohan A, J. Appl. Phys., 87, 7001 (2000)
- Taboada E, Solanas R, Rodriguez E, Weissleder R, Roig A, Adv. Funct. Mater., 19(14), 2319 (2009)
- Apte SK, Naik SD, Sonawane RS, Kale BB, J. Am. Ceram. Soc., 90(2), 412 (2007)
- Sun SH, Zeng H, J. Am. Chem. Soc., 124(28), 8204 (2002)
- Song O, Zhang ZJ, J. Am. Chem. Soc., 126(19), 6164 (2004)
- Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S, Nanoscale, 3, 225 (2011)
- Cesar I, Kay A, Martinez JAG, Gratzel M, J. Am. Chem. Soc., 128(14), 4582 (2006)
- Chen J, Xu LN, Li WY, Gou XL, Adv. Mater., 17(5), 582 (2005)
- Jia B, Gao L, Cryst. Growth Des., 8, 1372 (2008)
- Zhang JH, Thurber A, Hanna C, Punnoose A, Langmuir, 26(7), 5273 (2010)
- Kim HT, Hwang CY, Song HB, Lee KJ, Joo YJ, Hong SJ, Kang NK, Park SD, Kim KD, Choa YH, J. Kor. Powd. Met. Inst., 15, 114 (2008)
- Megelski S, Stephens JS, Chase DB, Rabolt JF, Macromolecules, 35(22), 8456 (2002)
- Lee WY, Yun HJ, Yoon JW, J. Alloys Comp., 583, 320 (2014)
- Ponhan W, Maensiri S, Solid State Sci., 11, 479 (2009)
- Medina-Castillo AL, Fernandez-Sanchez JF, Fernandez-Gutierrez A, Adv. Funct. Mater., 21(18), 3488 (2011)
- Saleem M, Al-Kuhaili MF, Durrani SMA, Bakhtiari IA, Phys. Scr., 85, 055802 (2012)
- Yamashita T, Hayes P, Appl. Surf. Sci., 254(8), 2441 (2008)
- An HL, Ahn HJ, Mater. Lett., 81, 41 (2012)
- Li JX, Xu JH, Dai WL, Li HX, Fan KN, Appl. Catal. B: Environ., 85(3-4), 162 (2009)
- Li ZJ, Shen WZ, He WS, Zu XT, J. Hazard. Mater., 155(3), 590 (2008)
- Xiaoyan P, Dongmei J, Yan L, Xueming M, J. Magn. Magn. Mater., 305, 388 (2006)
- Koo BR, Park IK, Ahn HJ, J. Alloys Comp., 603, 52 (2014)