화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.8, 423-428, August, 2014
복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성
Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property
E-mail:
We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at 500 oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition, the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3 NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2 lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
  1. Dobson J, Drug Dev. Res., 67, 55 (2006)
  2. Dronskowski R, Adv. Funct. Mater., 11(1), 27 (2001)
  3. Wiemann JA, Carpenter EE, Wiggins J, Zhou W, Tang J, LI S, John VT, Long GJ, Mohan A, J. Appl. Phys., 87, 7001 (2000)
  4. Taboada E, Solanas R, Rodriguez E, Weissleder R, Roig A, Adv. Funct. Mater., 19(14), 2319 (2009)
  5. Apte SK, Naik SD, Sonawane RS, Kale BB, J. Am. Ceram. Soc., 90(2), 412 (2007)
  6. Sun SH, Zeng H, J. Am. Chem. Soc., 124(28), 8204 (2002)
  7. Song O, Zhang ZJ, J. Am. Chem. Soc., 126(19), 6164 (2004)
  8. Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S, Nanoscale, 3, 225 (2011)
  9. Cesar I, Kay A, Martinez JAG, Gratzel M, J. Am. Chem. Soc., 128(14), 4582 (2006)
  10. Chen J, Xu LN, Li WY, Gou XL, Adv. Mater., 17(5), 582 (2005)
  11. Jia B, Gao L, Cryst. Growth Des., 8, 1372 (2008)
  12. Zhang JH, Thurber A, Hanna C, Punnoose A, Langmuir, 26(7), 5273 (2010)
  13. Kim HT, Hwang CY, Song HB, Lee KJ, Joo YJ, Hong SJ, Kang NK, Park SD, Kim KD, Choa YH, J. Kor. Powd. Met. Inst., 15, 114 (2008)
  14. Megelski S, Stephens JS, Chase DB, Rabolt JF, Macromolecules, 35(22), 8456 (2002)
  15. Lee WY, Yun HJ, Yoon JW, J. Alloys Comp., 583, 320 (2014)
  16. Ponhan W, Maensiri S, Solid State Sci., 11, 479 (2009)
  17. Medina-Castillo AL, Fernandez-Sanchez JF, Fernandez-Gutierrez A, Adv. Funct. Mater., 21(18), 3488 (2011)
  18. Saleem M, Al-Kuhaili MF, Durrani SMA, Bakhtiari IA, Phys. Scr., 85, 055802 (2012)
  19. Yamashita T, Hayes P, Appl. Surf. Sci., 254(8), 2441 (2008)
  20. An HL, Ahn HJ, Mater. Lett., 81, 41 (2012)
  21. Li JX, Xu JH, Dai WL, Li HX, Fan KN, Appl. Catal. B: Environ., 85(3-4), 162 (2009)
  22. Li ZJ, Shen WZ, He WS, Zu XT, J. Hazard. Mater., 155(3), 590 (2008)
  23. Xiaoyan P, Dongmei J, Yan L, Xueming M, J. Magn. Magn. Mater., 305, 388 (2006)
  24. Koo BR, Park IK, Ahn HJ, J. Alloys Comp., 603, 52 (2014)