화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.6, 4443-4446, November, 2014
Effect of KOH on the continuous synthesis of cobalt oxide and manganese oxide nanoparticles in supercritical water
E-mail:
The effects of KOH on the supercritical hydrothermal synthesis of cobalt oxide and manganese oxide particles are investigated using a continuous-flow reactor. Significant changes in morphology, particle size, and oxidation state are observed by adding KOH. The spinel Co3O4 phase is transformed to a rocksalt CoO phase and the pyrolusite MnO2 phase is transformed to a hausmannite Mn3O4 phase in the presence of 0.5 M KOH. The average particle size of the metal oxides decreased with an addition of KOH. The OH- ions of KOHmay act as a reducing agent as well as a supersaturation enhancing agent under supercritical water conditions.
  1. Jiao F, Frei H, Energy Environ. Sci., 3, 1018 (2010)
  2. Maltha A, Favre TL, Kist HF, Zuur AP, Ponec V, J. Catal., 149(2), 364 (1994)
  3. Xie X, Li Y, Liu ZQ, Haruta M, Shen W, Nature, 458, 746 (2009)
  4. Li WY, Xu LN, Chen J, Adv. Funct. Mater., 15(5), 851 (2005)
  5. Ando M, Kobayashi T, Iijima S, Haruta M, J. Mater. Chem., 7, 1779 (1997)
  6. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
  7. Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22(35), E170 (2010)
  8. Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
  9. Lu XH, Lei J, Zhou D, Fang SY, Dong YL, Xia QH, Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem., 49, 1586 (2010)
  10. Te M, Foley HC, Appl. Catal. A: Gen., 119(1), 97 (1994)
  11. Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 1019 (1992)
  12. Byrappa K, Adschiri T, Prog. Cryst. Growth Charact. Mater., 53, 117 (2007)
  13. Hong SA, Kim SJ, Kim J, Chung KY, Cho BW, Kang JW, J. Supercrit. Fluids, 55(3), 1027 (2011)
  14. Shin YH, Koo SM, Kim DS, Lee YH, Veriansyah B, Kim J, Lee YW, J. Supercrit. Fluids, 50(3), 250 (2009)
  15. Adschiri T, Lee YW, Goto M, Takami S, Green Chem., 13, 1380 (2011)
  16. Jeon HS, Nugroho A, Kim J, Kim H, Min BK, Int. J. Hydrog. Energy, 36(17), 10587 (2011)
  17. Nugroho A, Kim SJ, Chung KY, Cho BW, Lee YW, Kim J, Electrochem. Commun., 13, 650 (2011)
  18. Nugroho A, Kim SJ, Chung KY, Kim J, Electrochim. Acta, 78, 623 (2012)
  19. Becker J, Hald P, Bremholm M, Pedersen JS, Chevallier J, Iversen SB, Iversen BB, ACS Nano, 2, 1058 (2008)
  20. Sue K, Kawasaki S, Suzuki M, Hakuta Y, Hayashi H, Arai K, Takebayashi Y, Yoda S, Furuya T, Chem. Eng. J., 166(3), 947 (2011)
  21. Galkin AA, Kostyuk BG, Lunin VV, Poliakoff M, Angew. Chem.-Int. Edit., 39, 2738 (2000)
  22. Hong SA, Kim SJ, Chung KY, Chun MS, Lee BG, Kim J, J. Supercrit. Fluids, 73, 70 (2013)
  23. Sue K, Murata K, Kimura K, Arai K, Green Chem., 5, 659 (2003)
  24. Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T, Green Chem., 8, 634 (2006)
  25. Ye Y, Yuan F, Li S, Mater. Lett., 60, 3175 (2006)
  26. Kim J, Park YS, Veriansyah B, Kim JD, Lee YW, Chem. Mater., 20, 6301 (2008)
  27. Sawyer DT, Roberts JL, Acc. Chem. Res., 21, 469 (1988)
  28. Tsang PKS, Sawyer DT, Inorg. Chem., 29, 2848 (1990)
  29. Hercules DM, Lytle FE, J. Am. Chem. Soc., 88, 4745 (1966)
  30. Srivatsa GS, Sawyer DT, Inorg. Chem., 24, 1732 (1985)
  31. Shin K, Kramer SK, Goff HM, Inorg. Chem., 26, 4103 (1987)