Journal of Industrial and Engineering Chemistry, Vol.20, No.6, 4443-4446, November, 2014
Effect of KOH on the continuous synthesis of cobalt oxide and manganese oxide nanoparticles in supercritical water
E-mail:
The effects of KOH on the supercritical hydrothermal synthesis of cobalt oxide and manganese oxide particles are investigated using a continuous-flow reactor. Significant changes in morphology, particle size, and oxidation state are observed by adding KOH. The spinel Co3O4 phase is transformed to a rocksalt CoO phase and the pyrolusite MnO2 phase is transformed to a hausmannite Mn3O4 phase in the presence of 0.5 M KOH. The average particle size of the metal oxides decreased with an addition of KOH. The OH- ions of KOHmay act as a reducing agent as well as a supersaturation enhancing agent under supercritical water conditions.
Keywords:Cobalt oxide;Manganese oxide;Oxidation state;Supercritical hydrothermal synthesis;Nanoparticles
- Jiao F, Frei H, Energy Environ. Sci., 3, 1018 (2010)
- Maltha A, Favre TL, Kist HF, Zuur AP, Ponec V, J. Catal., 149(2), 364 (1994)
- Xie X, Li Y, Liu ZQ, Haruta M, Shen W, Nature, 458, 746 (2009)
- Li WY, Xu LN, Chen J, Adv. Funct. Mater., 15(5), 851 (2005)
- Ando M, Kobayashi T, Iijima S, Haruta M, J. Mater. Chem., 7, 1779 (1997)
- Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
- Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22(35), E170 (2010)
- Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
- Lu XH, Lei J, Zhou D, Fang SY, Dong YL, Xia QH, Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem., 49, 1586 (2010)
- Te M, Foley HC, Appl. Catal. A: Gen., 119(1), 97 (1994)
- Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 1019 (1992)
- Byrappa K, Adschiri T, Prog. Cryst. Growth Charact. Mater., 53, 117 (2007)
- Hong SA, Kim SJ, Kim J, Chung KY, Cho BW, Kang JW, J. Supercrit. Fluids, 55(3), 1027 (2011)
- Shin YH, Koo SM, Kim DS, Lee YH, Veriansyah B, Kim J, Lee YW, J. Supercrit. Fluids, 50(3), 250 (2009)
- Adschiri T, Lee YW, Goto M, Takami S, Green Chem., 13, 1380 (2011)
- Jeon HS, Nugroho A, Kim J, Kim H, Min BK, Int. J. Hydrog. Energy, 36(17), 10587 (2011)
- Nugroho A, Kim SJ, Chung KY, Cho BW, Lee YW, Kim J, Electrochem. Commun., 13, 650 (2011)
- Nugroho A, Kim SJ, Chung KY, Kim J, Electrochim. Acta, 78, 623 (2012)
- Becker J, Hald P, Bremholm M, Pedersen JS, Chevallier J, Iversen SB, Iversen BB, ACS Nano, 2, 1058 (2008)
- Sue K, Kawasaki S, Suzuki M, Hakuta Y, Hayashi H, Arai K, Takebayashi Y, Yoda S, Furuya T, Chem. Eng. J., 166(3), 947 (2011)
- Galkin AA, Kostyuk BG, Lunin VV, Poliakoff M, Angew. Chem.-Int. Edit., 39, 2738 (2000)
- Hong SA, Kim SJ, Chung KY, Chun MS, Lee BG, Kim J, J. Supercrit. Fluids, 73, 70 (2013)
- Sue K, Murata K, Kimura K, Arai K, Green Chem., 5, 659 (2003)
- Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T, Green Chem., 8, 634 (2006)
- Ye Y, Yuan F, Li S, Mater. Lett., 60, 3175 (2006)
- Kim J, Park YS, Veriansyah B, Kim JD, Lee YW, Chem. Mater., 20, 6301 (2008)
- Sawyer DT, Roberts JL, Acc. Chem. Res., 21, 469 (1988)
- Tsang PKS, Sawyer DT, Inorg. Chem., 29, 2848 (1990)
- Hercules DM, Lytle FE, J. Am. Chem. Soc., 88, 4745 (1966)
- Srivatsa GS, Sawyer DT, Inorg. Chem., 24, 1732 (1985)
- Shin K, Kramer SK, Goff HM, Inorg. Chem., 26, 4103 (1987)