화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 648-653, December, 2014
크롬(VI)-헤테로고리 착물(2,4’-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘
Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4’-Bipyridinium Chlorochromate)
E-mail:
초록
크롬(VI)-헤테로고리 착물(2,4’-비피리디늄 클로로크로메이트)을 합성하여, 적외선 분광광도법(IR), 유도결합 플라즈마 (ICP) 등으로 구조를 확인하였고, 여러 가지 용매 하에서, 2,4’-비피리디늄 클로로크로메이트를 이용하여 벤질알코올의 산화반응을 측정한 결과, 유전상수값의 증가에 따라 반응도 증가했다는 것을 보였다. 그 순서는 : N,N-디메 틸포름아미드(DMF) > 아세톤 > 클로로포름 > 시클로헥센산 촉매(HCl)를 이용한 DMF 용매 하에서, 2,4’-비피리디늄 클로로크로메이트은 벤질 알코올(H)과 그의 유도체들(p-CH3, m-Br, m-NO2)을 효과적으로 산화시켰다. 전자받개 그룹들은 반응 속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰고, Hammett 반응상수(ρ) 값은 -0.67 (303 K)이었다. 속도결정단계에서 크로메이트 에스테르의 형성과정을 거친 후, 양성자 전이가 일어났다.
Cr(VI)-heterocyclic complex (2,4’-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4’-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4’-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (ε), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4’-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-CH3, m-Br, m-NO2). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (ρ) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.
  1. Banerji KK, Bull. Chem. Soc. Japan, 61, 1767 (1988)
  2. Kuo JF, Bull. Chem. Soc. Japan, 64, 3059 (1991)
  3. Mahanti MK, Dey D, J. Org. Chem., 55, 5848 (1990)
  4. Mahanti MK, Bull. Korean Chem. Soc., 4, 120 (1983)
  5. Panigrahi GP, Bull. Korean Chem. Soc., 13, 547 (1992)
  6. Mahanti MK, Kuotsu B, Tiewsoh E, J. Org. Chem., 61, 8875 (1996)
  7. Davis HB, Sheets RM, Pandler WW, Heterocyc-les, 22, 2029 (1984)
  8. Pressprich MR, Willett RD, Davis HB, Inorg. Chem., 27, 260 (1988)
  9. Cho MH, Kim JH, Park HB, J. Korean Chem. Soc., 33, 366 (1989)
  10. Yadav GD, J. Phys. Chem., 101, 36 (1997)
  11. Mahanti MK, Bull. Chem. Soc. Japan, 67, 2320 (1994)
  12. Mahanti MK, J. Org. Chem., 58, 4925 (1993)
  13. Koo IS, Kim JS, An SK, J. Korean Chem. Soc., 43, 527 (1999)
  14. Tayebee R, J. Korean Chem. Soc., 52, 23 (2008)
  15. Sung RY, Choi H, Koo IS, Bull. Korean Chem. Soc., 30, 1579 (1988)
  16. Kim YS, Choi H, Koo IS, Bull. Korean Chem. Soc., 31, 3279 (2010)
  17. Cho MH, Kim JH, Park HB, J. Korean Chem. Soc., 33, 366 (1989)
  18. Yadav GD, J. Phys. Chem., 101, 36 (1997)
  19. Mahanti MK, Bull. Chem. Soc. Japan, 67, 2320 (1994)
  20. Richard D, Gilliom, Physical Organic Chemistry, 169-180 (1992)
  21. Mahanti MK, J. Org. Chem., 58, 4925 (1993)