화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 553-558, December, 2014
바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략
Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel
E-mail:
초록
미세조류는 통상적인 에너지 작물에 비하여 빠른 성장속도와 높은 오일함량으로 바이오디젤 생산의 원료로 관심을 받고 있다. 미세조류의 지질은 주로 트리글리세라이드인 중성지방으로 에스테르교환반응을 통하여 바이오디젤인 지방산 메틸에스테르로 전환할 수 있다. 본 논문에서는 영양분의 제한, 염도 및 금속 성분의 변화와 같이 미세조류의 지질 생산을 촉진할 수 있는 배양환경 스트레스 조건의 영향들을 비교 고찰하였다. 사용하는 미세조류 종에 따라 스트레스에 대응하여 지질의 양이 변하거나 구성하는 지방산의 조성이 변화될 수 있다. 비록 질소원 제한 조건이 가장 많이 사용되는 지질생산 촉진조건이긴 하지만, 미세조류로부터 바이오디젤 생산성의 향상을 위해서는 그 외에도 영양분 과잉 조건, 염도의 변화, pH, 온도, 금속 성분 농도 변화 등의 다른 조건들도 고려되어야 한다.
Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.
  1. Brennan L, Owende P, Renew. Sustain. Energy Rev., 14, 557 (2010)
  2. Miao XL, Wu QY, Bioresour. Technol., 97(6), 841 (2006)
  3. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y, Water Res., 45, 11 (2011)
  4. Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P, Bioresour. Technol., 174, 52 (2014)
  5. Ehimen EA, Sun ZF, Carrington CG, Fuel, 89(3), 677 (2010)
  6. Mousdale DM, Biofuels: Biotechnology, Chemistry and Sustainable Development, CRC Press, FL, USA (2008)
  7. Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA, Biomass Bioenerg., 31(1), 87 (2007)
  8. Griffiths MJ, Harrison STL, J. Appl. Phycol., 21, 493 (2009)
  9. Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494 (2010)
  10. Evans CT, Ratledge C, J. Gen. Microbiol., 130, 1705 (1984)
  11. Benemann JR, Oswald WJ, System and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Technical Progress Report DEFG22-93PC93204, The Department of Energy, USA (1996)
  12. Darzins A, Pienkos P, Edye L, Current Status and Potential for Algal Biofuels Production, IEA Bioenergy Task 39, Report T39-T2 6, NREL, USA (2010)
  13. Santiago DEO, Jin HF, Lee K, Process Biochem., 45, 1949 (2010)
  14. Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y, Biotechnol. Adv., 20, 491 (2003)
  15. Ventura JRS, Yang BQ, Lee YW, Lee K, Jahng D, Bioresour. Technol., 137, 302 (2013)
  16. Lee SH, Kook JW, Na JG, Oh YK, Appl. Chem. Eng., 24(3), 285 (2013)
  17. Thompson GA, Biochim. Biophys. Acta, 1302, 17 (1996)
  18. Guschina IA, Harwood JL, Prog. Lipid Res., 45, 160 (2006)
  19. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621 (2008)
  20. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR, Biotechnol. Bioeng., 102(1), 100 (2009)
  21. Illman AM, Scragg AH, Shales SW, Enzyme Microb. Technol., 27(8), 631 (2000)
  22. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL, Bioresour. Technol., 101(17), 6797 (2010)
  23. Widjaja A, Chien CC, Ju YH, J. Taiwan Inst. Chem. Eng., 40, 13 (2009)
  24. Khozin-Goldberg I, Cohen Z, Phytochemistry, 67, 696 (2006)
  25. Reitan KI, Rainuzzo JR, Olsen Y, J. Phycol., 30, 972 (1994)
  26. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, J. Biol. Chem., 284, 23415 (2009)
  27. Jin HF, Lim BR, Lee K, J. Environ. Sci. Health, 41, 2813 (2006)
  28. Feng DN, Chen ZA, Xue S, Zhang W, Bioresour. Technol., 102(12), 6710 (2011)
  29. Ho SH, Chen WM, Chang JS, Bioresour. Technol., 101(22), 8725 (2010)
  30. Mujtaba G, Choi W, Lee CG, Lee K, Bioresour. Technol., 123, 279 (2012)
  31. Wan C, Bai FW, Zhao XQ, Biochem. Eng. J., 78, 32 (2013)
  32. Kim G, Lee K, Simultaneous enhancement of biomass and lipid production in marine microalga Tetraselmis sp. through the supplementation of nitrate and glycerol, The 10th Korean Society of Marine Biotechnology. October 16, Incheon, Korea (2014)
  33. Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
  34. Chen GQ, Jiang Y, Chen F, J. Phycol., 44, 1309 (2008)
  35. Zhu LY, Zhang XC, Ji L, Song XJ, Kuang CH, Process Biochem., 42, 210 (2007)
  36. Kim G, Lee K, Lipid production in microalga Tetraselmis sp. through salinity variation, The 49th Korean Society of Industrial and Engineering Chemistry Meeting. May 1, Jeju, Korea (2014)
  37. Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M, Oliveira MM, Environ. Pollut., 120, 779 (2002)
  38. Liu ZY, Wang GC, Zhou BC, Bioresour. Technol., 99(11), 4717 (2008)
  39. Abd El Baky HH, El-Baroty GS, Bouaid A, Martinez M, Aracil J, Bioresour. Technol., 119, 429 (2012)
  40. Rizwan M, Mujtaba G, Lee K, The effects of iron, CO2 and light/dark in growth, lipid and carbohydrate accumulation in Dunaliella tertiolecta, The 50th Korean Society of Industrial and Engineering Chemistry Meeting. November 7, Daegu, Korea (2014)