화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.10, 1074-1083, October, 2014
Significant approaches to promote post-cure reaction of bulky polyimides with pendant phthalonitrile unit
E-mail:,
Approaches to promote the post-cure reaction of polyimide with pendant phthalonitrile unit (CN-PI) were first realized by introducing of hydroxyl groups via chemical copolymerization or physical blending. The post-cure reaction of the CN-PI was performed at 250 or 300 °C, and monitored by various techniques, such as infrared spectroscopy (IR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). A significant result was found in that the trend of the increasing glass transition temperature T g with nitrile conversion followed DiBenedetto’s equation. This provided a chance to deeply discuss the relationship between molecular structure, segmental mobility, and cure behavior of CNPI. Chemical structure changes and morphology evolution of the polymer during post-cure process were investigated by IR, WAXD, and SEM. The thermal and mechanical properties of polymer films showed it to be a thermally stable and strong material.
  1. Ravve A, Reactions of Polymers (Chapter 8), Principles of Polymer Chemistry, 2nd ed., Springer-Verlag Inc., New York (2000)
  2. Cassidy PE, Thermally Stable Polymer, Marcel Dekker, New York (1980)
  3. Zeng K, Guo Q, Gao S, Wu D, Fan H, Yang G, Macromol. Res., 20(1), 10 (2012)
  4. Yuan Z, Yu J, Rao B, Bai H, Jiang N, Gao J, Lu S, Macromol. Res., 22(4), 405 (2014)
  5. Ghosh MK, Mittal KL, Eds., Polyimides Fundamental and Applications, Marcel Dekker, New York (1996)
  6. Zeng K, Yang G, Phthalonitrile Matrix Resins and Composites, Encyclopedia of Composites, 2nd ed., John Wiley & Sons, Inc., New York (2012)
  7. Burchill PJ, J. Polym. Sci. A: Polym. Chem., 32(1), 1 (1994)
  8. Sastri SB, Keller TM, J. Polym. Sci. A: Polym. Chem., 36(11), 1885 (1998)
  9. Dominguez DD, Keller TA, Polymer, 48(1), 91 (2007)
  10. Wu DM, Zhao YC, Zeng K, Yang G, J. Polym. Sci. A: Polym. Chem., 50(23), 4977 (2012)
  11. Zeng K, Hong HB, Zhou SH, Wu DM, Miao PK, Huang ZF, Yang G, Polymer, 50(21), 5002 (2009)
  12. Zeng K, Li L, Xiang SR, Zhou Y, Yang G, Polym. Bull., 68(7), 1879 (2012)
  13. Zeng K, Zou Y, Yang G, Des. Monomers Polym., 17, 186 (2014)
  14. Ding Y, Bikson B, Nelson JK, Macromolecules, 35(3), 905 (2002)
  15. Chung IS, Kim SY, Macromolecules, 33(9), 3190 (2000)
  16. Fox TG, Losheak S, J. Polym. Sci., 15, 371 (1955)
  17. Stutz H, Illers KH, Mertes J, J. Polym. Sci. Part B: Polym. Phys., 28, 1483 (1990)
  18. Venditti RA, Gillham JK, J. Appl. Polym. Sci., 64(1), 3 (1997)
  19. Hale A, Macosko CW, Bair HE, Macromolecules, 24, 2610 (1991)
  20. Dibenedetto AT, J. Polym. Sci. Part B: Polym. Phys., 25, 1449 (1987)
  21. Feger C, Macknight WJ, Macromolecules, 18, 280 (1985)
  22. Adabbo HE, Williams RJJ, J. Appl. Polym. Sci., 27, 1327 (1982)
  23. Enns JB, Gillham JK, J. Appl. Polym. Sci., 28, 2567 (1983)
  24. Horie K, Hiura H, Sawada M, Mita I, Kambe H, J. Appl. Polym. Sci., 8, 1357 (1970)
  25. Griffith JR, Snow AW, Marullo NP, Macromolecules, 17, 1614 (1984)
  26. Pankratova EV, Rodionova GN, Zaitsev BE, Titkov VA, Chem. Heterocycl. Compd., 13, 54 (1977)
  27. Sumner MJ, Sankarapandian M, McGrath JE, Riffle JS, Sorathia U, Polymer, 43(19), 5069 (2002)
  28. Kopylovich MN, Kukushkin VY, Haukka M, Luzyanin KV, Pombeiro AJL, J. Am. Chem. Soc., 126(46), 15040 (2004)
  29. Ahn JH, Jang JE, Oh CG, Ihm SK, Cortez J, Sherrington DC, Macromolecules, 39(2), 627 (2006)