화학공학소재연구정보센터
Clean Technology, Vol.20, No.3, 298-305, September, 2014
민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출
Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plusⓡ
E-mail:
초록
석탄에 포함되어 있는 회분은 환경오염을 유발시킬 수 있으며, 고온에서 운전되는 발전 설비에 융착되어 열전달 효율을 저하시키는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해서 알칼리나 산, 또는 유기 용매를 이용하여 석탄 내의 회분을 제거하기 위한 연구와 함께 무회분 석탄을 이용한 석탄화력 발전 및 석탄가스화 복합발전에 대한 타당성 연구가 활발히 진행 중이다. 따라서 본 연구에서는 200 ppm급 무회분 석탄을 석탄가스화 발전에 이용하기 위해서 필요한 가스화기 운전조건을 ASPEN Plusⓡ 공정모사의 민감도 해석을 바탕으로 도출하였다. 특히 석탄가스화 공정은 열분해, 휘발분 연소, 촤 가스화 공정으로 나누어 해석을 진행하였으며, 1.5 톤일급 비용융(non-slagging) 가스화기의 크기 및 운전 조건을 반영하여 모델링 하였다.
Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN Plusⓡ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.
  1. Stakic T, Cvetimovic D, Skobalj P, Spasojevic V, “An Initial Study on Feasible Treatment of Serbian Lignite through Utilization of Low-Rank Coal Upgrading Technologies,” Chem. Eng. J, Article in Progress (2014)
  2. Petela R, Fuel Process. Technol., 60(1), 29 (1999)
  3. Sakaguchi M, Laursen K, Nakagawa H, Miura K, Fuel Process. Technol., 89(4), 391 (2008)
  4. Mahidin, Ogaki Y, Usui H, Okuma O, Fuel Process. Technol., 84(1-3), 147 (2003)
  5. Singh OK, KaushiK SC, Appl. Therm. Eng., 51, 787 (2013)
  6. Tzolakis G, Papamokolaou P, Kolokotronis N, Samaras N, Tourlidakis A, Tomboulides A, Appl. Therm. Eng., 48, 256 (2012)
  7. Kim SH, Lee CG, J. Energy Eng., 21, 325 (2012)
  8. Okuyama N, Komatsu N, Shigehisa T, Kaneko T, Tsutuya S, Fuel Process. Technol., 85(8-10), 947 (2004)
  9. Takanohashi T, Shishido T, Kawashima H, Saito I, Fuel, 87(4-5), 592 (2008)
  10. Kopyscinski J, Rahman M, Gupta R, Mims CA, Hill JM, Fuel, 117, 1181 (2014)
  11. Kopyscinski J, Lam J, Mims CA, Hill JM, “K2CO3 Catalyzed Steam Gasification of Ash-free Coal. Studying the Effect of Temperature on Carbon Conversion and Gas Production Rate Using a Drop-down Reactor,” Fuel, Article in Press (2014)
  12. Kim J, Choi H, Lim J, Rhim Y, Chun D, Kim S, Lee S, Yoo J, Int. J. Hydrog. Energy, 38(14), 6014 (2013)
  13. Park SK, Jun YS, Kim HT, “A Comparative Study on Catalyst Gasification Reaction Using Lignite and Hyper Coal,” Abstract of Korea Society of Energy & Climate Change, pp. 89-93 (2009)
  14. Jin S, Yoo J, Rhee YW, Choi H, Lim J, Lee S, Clean Technol., 18(4), 426 (2012)
  15. “ASPEN Plus Model for Entrained Flow Coal Gasification,” ASPEN Technology, Inc (2011)
  16. Suuberg EM, Peters WA, Howard JB, J. Chem. Eng, 17, 37 (1978)
  17. Wen CY, Chaung TZ, Chem. Process., 18, 684 (1979)
  18. Wen CY, Chem. Eng., 60, 34 (1968)