화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.9, 948-957, September, 2014
ATRP graft copolymerization of poly(N-isopropylacrylamide-co-acrylic acid) on multiwalled carbon nanotubes
E-mail:,
The polymer functionalized multiwalled carbon nanotubes (MWCNT) have been prepared by atom transfer radical graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) monomers from their binary mixture at fixed feed molarity and composition (f NIPAAm ). The donor-acceptor interactions between acrylic acid and N-isopropylacrylamide have enhanced the activity of N-isopropylacrylamide for grafting onto MWCNT (52%) in comparison to individual grafting of N-isopropylacrylamide onto MWCNT (38%). The CuBr and N′N′N′N′N′-pentamethyldiethylenetriamine (PMDETA) were used as ATRP catalysts for graft copolymerization of N-isopropylacrylamide and acrylic acid onto multiwalled carbon nanotubes. The copolymers grafted onto MWCNT were of high molecular weight (42×10^(3) g mol-1) with low molecular weight dispersity (1.13) at 0.1 M a feed molarity and feed composition (f NIPAAm ) of 0.6. The graft yield (%G), molecular weight (MW), and sequence length of N-isopropylacrylamide and acrylic acid monomers (mM1 an mM2) in the grafted chains varied significantly with varying feed composition (f NIPAAm ). The grafting produced highly water soluble multiwalled carbon nanotubes in comparison to pristine MWCNT. The grafted copolymer chain dispersity varied with solution temperature and pH due to the temperature and pH sensitivity of the monomers. The poly(N-isopropylacrylamide-co-acrylic acid) grafted chains were characterized by FT-IR and NMR techniques for their structures and thermal stability as determined by TGA.
  1. Chen H, Zuo X, Su S, Tang Z, Wu A, Song S, Zhang D, Fan C, Analyst, 133, 1182 (2008)
  2. Mantha S, Pedrosa VA, Olsen EV, Davis VA, Simonian AL, Langmuir, 26(24), 19114 (2010)
  3. Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW, J. Angew. Chem. Int. Ed., 44, 4782 (2005)
  4. Dwyer C, Guthold MM, Falvo M, Washburn S, Superfine R, Erie D, Nanobiotechnology, 13, 601 (2002)
  5. Iijima S, Nature, 354, 56 (1991)
  6. Wang YB, Iqbal Z, Mitra S, J. Am. Chem. Soc., 128(1), 95 (2006)
  7. Chen RJ, Zhan YG, Wang DW, Dai HJ, J. Am. Chem. Soc., 123(16), 3838 (2001)
  8. Star A, Steuerman DW, Heath JR, Stoddart JF, J. Angew. Chem. Int. Ed., 41, 2508 (2002)
  9. Dieckmann GR, Dalton AB, Johnson PA, Razal Z, Chen J, Giordano GM, Munoz E, Musselmann IH, Baughman RH, Draper RK, J. Am. Chem. Soc., 127 (2003)
  10. Jiang K, Schdder LS, Siegel RW, Zhang X, Zhange H, Terronesd M, J. Mater. Chem., 14, 37 (2004)
  11. Lin Y, Hill DE, Bentley J, Alland LF, Sun SP, J. Phys. Chem. B, 161, 10453 (2003)
  12. Gunawan P, Guan C, Song X, Zhang Q, Leong SSJ, Tong C, Chen Y, Chan-Pak MB, Chang MW, Wang K, Xu R, ACS Nano, 12, 10033 (2011)
  13. Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Legoudas D, Sue HJ, Carbon, 46, 320 (2008)
  14. Wang D, Chen LW, Nano Lett., 7, 1480 (2007)
  15. Wladyka-Przybylak M, Wesolek D, Gieparda W, Boczkowska A, Ciecierska E, Polym. Adv. Technol., 22, 48 (2011)
  16. Grunlan JC, Liu L, Regev O, J. Colloid Interface Sci., 317(1), 346 (2008)
  17. Etika KC, Jochum FD, Cox MA, Schattling P, Theato P, Grunlan JC, Macromol. Rapid Commun., 31(15), 1368 (2010)
  18. Maeda N, Nakamura T, Ikada I, Macromol. Rapid Commun., 31, 1368 (2001)
  19. Thiato P, Etika KC, Jochun FD, Grunlan JC, J. Am. Chem. Soc., 31, 13598 (2009)
  20. Gupta KC, Polym. Prept. Am. Chem. Soc. Div. Polym. Chem., 50, 174 (2009)
  21. Gupta KC, Khandekar K, Polym. Int., 55, 139 (2006)
  22. Humear M, Chem. Eur. J., 15, 2111 (2009)
  23. Liu HY, Zhu XX, Polymer, 40, 69 (1999)
  24. Chen GH, Hoffman AS, Nature, 373(6509), 49 (1995)
  25. Priftis D, Sakellariou G, Mays JW, Hadjichristidis N, J. Polym. Sci. A: Polym. Chem., 48(5), 1104 (2010)