Korean Journal of Chemical Engineering, Vol.31, No.11, 1973-1979, November, 2014
The effects of MCM-41’s calcination temperature on the structure and hydrodenitrogenation over NiW catalysts
E-mail:,
MCM-41 was calcined at 500, 560, 600 or 650 ℃. It was used as support for NiW catalysts of hydrodenitrogenation (HDN) for quinoline in order to investigate the influences of the MCM-41’s calcination temperature on the structure and the HDN performance of NiW catalysts. The NiW catalysts were characterized by XRD, N2 adsorptiondesorption, XPS, Raman, HRTEM and Py-IR techniques. The results showed that the surface area (SBET), the average pore diameter (Dp) and the pore volume (Vp) of the MCM-41 increased with increase of the MCM-41’s calcination
temperature. The high SBET, Dp and Vp were beneficial for the high dispersion of W species, the formation of appropriate nature of W species and acid sites on the catalysts. The HDN activity followed the order of NiW-650≒NiW-600>NiW- 560>NiW-500, while the relative selectivity of HDN pathways was similar for all the catalysts.
- Dominguez-Crespo MA, Torres-Huerta AM, Diaz-Garcia L, Arce-Estrada EM, Ramirez-Meneses E, Fuel Process. Technol., 89(8), 788 (2008)
- Soni KK, Mouli KC, Dalai AK, Adiaye J, Micropor. Mesopor. Mater., 152, 224 (2012)
- Peeters E, Cattenot M, Geantet C, Breysse M, Zotin JL, Catal. Today, 133, 299 (2008)
- Luan YZ, Zhang QM, He DM, Guan J, Liang CH, Asia-Pac. J. Chen. Eng., 4, 704 (2009)
- Al-Megren HA, Gonzalez-Cortes SL, Xiao T, Green MLH, Appl. Catal. A: Gen., 329, 36 (2007)
- Cui GQ, Wang JF, Fan HF, Sun XY, Jiang Y, Wang SJ, Liu D, Gui JZ, Fuel Process. Technol., 92(12), 2320 (2011)
- Li SZ, Lee JS, J. Catal., 173(1), 134 (1998)
- Clark P, Li W, Oyama ST, J. Catal., 200(1), 140 (2001)
- Fan Y, Bao XJ, Wang H, Chen CF, Shi G, J. Catal., 245(2), 477 (2007)
- Guemez MB, Canbra JF, Arias PL, Legarreta JA, Fierro JLG, Fuel, 74, 285 (1995)
- Duan XP, Li X, Wang AJ, Teng Y, Wang Y, Hu YK, Catal. Today, 149(1-2), 11 (2010)
- Lu MH, Wang AJ, Li X, Duan XP, Teng Y, Wang Y, Song CS, Hu YK, Energy Fuels, 21(2), 554 (2007)
- Basha SJS, Vijayan P, Suresh C, Santhanaraj D, Shanthi K, Ind. Eng. Chem. Res., 48(6), 2774 (2009)
- Basha SJS, Sasirekha NR, Maheswari R, Shanthi K, Appl. Catal. A: Gen., 308, 91 (2006)
- Khder AS, Hassan HMA, El-Shall MS, Appl. Catal. A: Gen., 411, 77 (2012)
- Chen CY, Li HX, Davis ME, Microporous Mater., 2, 17 (1993)
- Keene MTJ, Gougeon RDM, Denoyel R, Harris RK, Rouquerol J, Llewellyn PL, J. Mater. Chem., 9, 2843 (1999)
- Vetrivel S, Pandurangan A, J. Mol. Catal. A-Chem., 227(1-2), 269 (2005)
- Kraleva E, Saladino ML, Spinella A, Nasillo G, Caponetti E, J. Mater. Sci., 46(22), 7114 (2011)
- Soni K, Boahene PE, Mouli KC, Dalai AK, Adjaye J, Appl. Catal. A: Gen., 398(1-2), 27 (2011)
- Vradman L, Landau MV, Kantorovich D, Koltypin Y, Gedaken A, Microporous Mesoporous Mater., 79, 307 (2005)
- Luo YM, Hou ZY, Li RT, Zheng XM, Microporous Mesoporous, 109, 585 (2008)
- Vradman L, Landau MV, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A, J. Catal., 213(2), 163 (2003)
- Lee JJ, Kim H, Koh JH, Jo A, Moon SH, Appl. Catal. B: Environ., 58(1-2), 89 (2005)
- Lawrence SJ, Makovsky LE, Stencel JE, Brown FR, Hercules DM, J. Phys. Chem., 85, 3700 (1981)
- Chen H, Dai WL, Deng JF, Fan KN, Catal. Lett., 81(1-2), 131 (2002)
- Kim DS, Ostromecki M, Wachs IE, Catal. Lett., 33(3-4), 209 (1995)
- Lei ZP, Gao LJ, Shui HF, Chen WL, Wang ZC, Ren SB, Fuel Process. Technol., 92(10), 2055 (2011)
- Kalita P, Gupta NM, Kumar R, J. Catal., 245(2), 338 (2007)
- Sursh C, Santhanaraj D, Gurulakshmi M, Deepa G, Selvaraj M, Rekha NRS, Shanthi K, ACS Catal., 2, 127 (2012)
- Li X, Wang AJ, Sun ZC, Li C, Ren J, Zhao B, Wang Y, Chen YY, Hu YK, Appl. Catal. A: Gen., 254(2), 319 (2003)
- Jian M, Prins R, J. Catal., 179(1), 18 (1998)
- Prins R, Jian M, Flechsenhar M, Polyhedron, 16, 3235 (1997)
- Cocchetto JF, Satterfield CN, Ind. Eng. Chem. Process. Des., 20, 49 (1981)