화학공학소재연구정보센터
Clean Technology, Vol.5, No.1, 20-29, June, 1999
Cu-CN 함유 폐수의 화학적 산화
Chemical Oxidation of Cu- and CN- contained Wastewater
초록
Cu-CN을 함유한 폐수를 펜톤산화-응집-침전의 공정으로 처리할 때, 펜톤 산화시 pH, 반응시간, 시안과 과산화수소의 몰비, 철염과 과산화수소 농도의 질량비 변화 그리고 수산화물 침전시 pH 변화에 따른 시안화물 및 구리의 최적의 제거율 조건을 조사하였다. 실험에 사용된 모든 폐수에 대해 펜톤 산화 반응의 최적 pH는 3~5 그리고 반응시간은 30분에서 시안의 제거율이 81.2%~99%로 가장 높게 나타났으며, H2O2와 FeSO4ㆍ7H2O의 최적 주입량은 Cu(2+):CN(molar ratio)=2:1, 1:1, 1:2, 1:10인 폐수에서는 각각 214, 428mg/ℓ, 107, 161mg/ℓ, 214, 214mg/ℓ, 520, 500mg/ℓ으로, Cu(+):CN=1:10인 폐수에서는 900, 1050mg/ℓ으로 나타났다. 산화 반응 후 구리를 수산화물로 침전 시킨 결과 모든 폐수에 대해 pH 7에서 그 제거율이 각각 98.92, 98.52, 92.46, 90.6% 그리고 95%로 가장 높게 나타났다.
In the treatment of Cu- and CN- contained wastewater by using Fenton oxidation-flocculation-precipitation, the optimal removal efficiencies of the cyanide and copper were investigated according to pH, reaction time, the molar ratio of cyanide and hydrogen peroxide and the mass ratio of ferrous sulfate and hydrogen peroxide for Fenton oxidation, and pH for hydroxide precipitation, respectively. As a result, the CN(-) removal efficiency in our experimental wastewater by the Fenton oxidation was 81.2%~99% at its optimal conditions of pH ranging from 3 to 5 and reaction time of 30 minutes. And the optimal dosage of hydrogen peroxide and ferrous sulfate was 214, 428mg/ℓ, 107, 161mg/ℓ, 214, 214mg/ℓ and 520, 500mg/ℓ, respectively when the molar ratio of Cu(2+):CN is 2:1, 1:1, 1:2, 1:10, and was 900, 1050mg/ℓ when the molar ratio of Cu(+): CN is 1:10. When the copper was precipitated by sodium hydroxide after Fenton oxidation, the copper removal efficiency in the wastewater at pH 7 was 98.92%, 98.52%, 92.46%, 90.6% and 95%, respectively.
  1. Dean JG, Bosqui FF, Lanoutte KH, Environ. Sci. Technol., 6(6), 518 (1972) 
  2. Lanouette KH, Chem. Eng., 84(21), 73 (1977)
  3. Larry DB, Joseph FJ, Barron LW, "Process Chemistry for Water and Wastewater Treatment," Prentice-Hall, Inc., Englawood Cliffs, N.Y. (1982)
  4. Tunay O, Kabdasli NI, Water Res., 28(1), 2117 (1994) 
  5. Peters RW, Bhattacharyya D, Ku Y, "Evaluationof Recent Treatment Techniques for Removal of Heavy Metals from Industrial Wastewater," Paper Presented at the Summer National AIChE Meeting, Philadelphia, PA, August, pp. 19 ~ 22 (1984)
  6. Peters RW, Ku Y, Chang TK, "Heavy Metal Crystallization Kinetics in an MSMPR Crystallizer Employing Sulfide Precipitation," American Institute of Chemical Engineers Sympos. Series, Advances in Crystallization from Solutions, 80(240), 55 (1984)
  7. Peters RW, Ku Y, Eriksen E, "Current Technology for Removal of Heavy Metals from Plating Operation," Paper Presented at the Michigan Industrial Hazardous Waste Conference, Hillcrest Center, Mt. Clemens, MI, 5, pp. 13 ~ 15 (1985)
  8. Maruyama T, Hannah SA, Cohen JM, J. Water Pollut. Control Fed., 47(5), 962 (1975)
  9. Muller KR, Chemical Waste(Handling and Treatment, Springer-Verlag Berlin Hidelberg (1986)
  10. Eilbeck WJ, Mattock G, Chemical Processing in Waste Water Treatment, John Wiley & Sons, N.Y. (1987)
  11. Kieszkowski M, Krajewski S, Trait. Surface, No. 9, pp. 823 (1968)
  12. 오동규, "펜톤시약을 이용한 폐수증 유기물의 산화처리," 인하대학교 대학원 박사학위논문 (1993)
  13. Lanouette KH, Chem. Eng., 84(21), 73 (1977)
  14. Bard AJ, Chemical Equilibrium, HARPER & ROW, N.Y. (1966)
  15. Fenton HJH, J. Chem. Soc., 65, 899 (1894)
  16. Haber F, Weiss J, Proc. Roy. Soc. A, 147, 332 (1934)
  17. Barb WG, J. Chem. Soc., 47, 462 (1951)
  18. Kremer ML, Trans. Faraday Soc., 59, 253 (1963)
  19. Mirat DG, William MB, Environ. Sci. Technol., 19(9), 804 (1995) 
  20. 김남천, 환경공학실험(수질편), 동화기술 (1989)
  21. Schumb WC, Satterfield CN, Wentworth RL, Hydrogen Peroxide, American Chemical Society, Chapman and Hall Co., pp. 557 ~ 559 (1955)
  22. Sedalk DL, Andren AW, Environ. Sci. Technol., 25(4), 777 (1991) 
  23. 도금기술편람편집위원회: 도금기술편람, 기전연구사, pp. 205 ~ 240 (1993)
  24. Sims AFE, Effluent Water Treatment J., 21(3), 109 (1981)