화학공학소재연구정보센터
Clean Technology, Vol.6, No.1, 71-78, June, 2000
광생물반응기내 광조사 유형별 탈황 효율
Desulfurization efficiency in photobioreactors dependent on the irradiation type of light sources
초록
본 연구는 광합성 균주인 C. thiosulfatophium을 이용한 황화수소의 생물학적 탈황공정시 광에너지를 저감시키기 위해 광원의 종류와 광조사 유형에 따른 탈황효율을 조사하였다. 광에너지를 저감시키기 위해서는 반응기내 광분산 효율을 극대화시켜야 한다. 광이용효율을 높이기 위해, 세균농도와 생성부산물의 증가에 의한 빛의 산란과 흡수가 세균성장에 미치는 영향에 관한 연구와 미생물이 필요로 하는 파장의 빛을 최대로 공급하기 위해 LED, 백열등, 태양광 등을 이용한 광원의 최적화 연구, 그리고 외부조사형 광반응기의 광투과 효율의 한계를 극복하기 위한 광섬유를 이용한 내부조사형 광반응기에 대한 연구를 수행하였다.
Removal rates of hydrogen sulfide were investigated to known effects of several light sources with external and internal irradiation on the desulfurization using C. thiosulfatophilum. In the case of internal illumination system, optical-fiber photobioreactor was applied to increase the light availability. Furthermore, sunlight was used as the main light energy in the daytime and metal-halide lamp was applied as an additional light energy at night. Light energy of 99% was saved by the application of the LED's array in comparison with the incandescent light source. H2S removal rates at 5,000 lux in a 4-L photobioreactor were shown as 0.040, 0.138, 0.136, and 0.134 (μmol H2S/min)/(mg protein/L), respectively, in the following order of light sources, when several light sources such as fluorescent, energy-saving, incandescent, halogen lamp, and filtered light at 460 nm were applied. Removal rate per unit cell concentration with the internal light diffused optical-fibers increased about 1 six times as much as that with the external light sources. Removal rate per unit cell concentration, using sunlight in the daytime and a metal-halide lamp at night, was 0.41 less than 0.869 (μmol H2S/min)/(mg protein/L) using a 400 W metal-halide lamp day and night, since the automatic sunlight collection system can transmit the light intensity as only 10% of that with a metal-halide lamp.
  1. Cork DJ, Garunas R, Sajjad A, Appl. Environ. Microbiol., 45, 913 (1983)
  2. Lee KH, Kim BW, Biotechnol. Lett., 20(5), 525 (1998) 
  3. Kim BW, Kim IK, Chang HN, Biotechnol. Lett., 12, 381 (1990) 
  4. Kim BW, Kim EH, Chang HN, Biotechnol. Tech., 5, 343 (1991)
  5. Kim BW, Chang HN, Kim IK, Lee KS, Biotechnol. Bioeng., 40, 583 (1992) 
  6. Kim BW, Chang KP, Chang HN, Bioprocess Eng., 17(6), 343 (1997) 
  7. Matsunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N, Appl. Biochem. Biotechnol., 28-29, 157 (1991)
  8. Mori K, Biotechnol. Bioeng., 15, 331 (1985) 
  9. Mori K, Ohya H, Matsumoto K, Furuune H, Isozaki K, Siekmeier P, Adv. Space Res., 9(8), 161 (1989) 
  10. Ogbonna JC, Yada H, Tanaka H, J. Ferment. Bioeng., 80(4), 369 (1995)