화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.220, No.2, 260-268, 1999
Effect of charge and hydrophobicity on adsorption of modified starches on polyester
Polyester fabric (poly(ethylene terephthalate)) is a hydrophobic polymer. Its hydrophobic nature can be a disadvantage for certain applications like dyeing, finishing, detergency, etc. Physical or chemical modification of the polyester to make it more hydrophilic is therefore desirable for certain performance characteristics. Surface modification of polyester to make it hydrophilic can be achieved by adsorbing polymers on the polyester surface. Starch is a commonly available, hydrophilic polymer used in many textile applications that can be used to modify polyester. However, it needs to be chemically modified so that it can adsorb on the polyester fabric and physically modify the fabric characteristics. The polymers used in this study are two different modified starches-cationic and anionic starches and mixtures of the two. The adsorption kinetics on a polyester substrate was studied. The effect of charge and hydrophobicity on adsorption was investigated. Cationic starches were shown to readily adsorb on polyester and this was attributed to electrostatic interactions. Hydrophobic substituents on the cationic moiety resulted in increased adsorption. This was attributed to the weak hydrophobic interaction between the polymer chains which could result in a more coiled polymer conformation, It is hypothesized that more starch molecules are required for surface coverage of the polyester, resulting in an increase in adsorption. Anionic starch was adsorbed on the substrate but at a slower rate than the cationic starches. It is likely that there is a I-I bonding between acid groups on the starch and the eater groups of the polyester. However, the anionic starch is desorbed when the polyester is placed in an aqueous medium. When a blend of cationic starch and anionic starch was used, a low concentration of anionic starch was seen to increase adsorption, indicating that the polyelectrolyte complex itself may be adsorbing on the substrate. Further increases cause a decrease in adsorption as no sites may be available on the complex for adsorption. When hydrophobic substituents are present, addition of the anionic starch causes a decrease in adsorption at all concentrations. This was attributed to the "crosslinking" between the hydrophobically modified starch and the anionic polymer.