화학공학소재연구정보센터
Clean Technology, Vol.7, No.2, 119-126, June, 2001
인공신경망 및 통계적 방법을 이용한 오존 형성의 예측
Prediction of Ozone Formation Based on Neural Network and Stochastic Method
초록
인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.
The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.
  1. Carter WPL, Winter AM, Darnal KR, Pitts JN, Environ. Sci. Technol., 13, 1094 (1979) 
  2. Sakamaki F, Okuda M, Akimoto H, Yamazaki H, Environ. Sci. Technol., 16, 45 (1982)
  3. Costanza V, Seinfeld JH, Environ. Sci. Technol., 16, 98 (1982) 
  4. Oh SC, Yeo YK, Korean J. Chem. Eng., 15(1), 20 (1998)
  5. 오세천, 여영구, 환경과학논문집, 19, 17 (1998)
  6. Scheffe RD, Morris RE, Atmos. Environ., 27B, 23 (1993)
  7. Elsayed EA, Boucher TO, Analysis and Control of Production Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1994)
  8. Frick PA, Valvavi AS, Estimation and Identification of Bilinear Systems, Atomat. Contr. Theory and Applications, 6, 1 (1978)
  9. Kubrusly CS, Int. J. Control, 33, 291 (1981)
  10. Oh SC, Yeo YK, Korean J. Chem. Eng., 13(4), 422 (1996)
  11. Landau ID, System Identification and Control Design, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1994)
  12. Zurada JM, Introduction to Artificial Neural Systems, PWS Publishing Company, Boston (1995)
  13. Funahashi K, On the Approximate Realization of Continuous Mappings by Neural Networks, Neural Networks, 2, 183 (1989)
  14. Sprecher DA, A Universal Mapping for Kolmogorov's Superposition Theorem, Neural Networks, 6, 1089 (1993)